2026/01/21 22:03 1/3 HTTP

HTTP

Nachdem jetzt klar ist, wie grundsatzlich Inhalte zwischen zwei Rechnern gesprochen wird, wird es
etwas konkreter: Der Server ist jetzt der Web-Server und der Client ist der Web-Browser. Dafur
mussen sie sich auf eine gemeinsame

Sprache verabreden, das ist das i

-

Hypertext Transfer Protocol

Der Name scheint aus einer anderen Zeit zu stammen. Tatsachlich ist HTTP gar nicht so alt wie das
Internet:

e RFC 1945 HTTP/1.0 (1996)
e RFC 2616 HTTP/1.1 (1999)
e RFC 7540 HTTP/2 (2015)

Zu den einzelnen Bestandteilen des Worts:

Was macht einen Text zu einem Hypertext?

Es geht nicht nur um Text im landlaufigen Sinn. Der Text enthalt selbst noch Metadaten, die
Formatierung und Textsatz ermdglichen und (ganz wichtig) es sind Elemente mit Interaktion méglich.
Zuerst nur Links, die zu einem anderen Dokument verweisen, aber auch Formularelemente o0.a..

Der Name steht fur eine Gattung moderner Dokumente. Das prominenteste Format eines solchen
Dokumententyps ist HTML:

Hypertext Markup Language
Merke: Das ist kein Protokoll, das ist ein Dokumentenformat!

Das H in HTTP macht klar, dass das Protokoll unter anderem fir den Zugriff auf Dokumente diesen
Typs gebaut wurde. Es war und ist aber nicht die einzige Aufgabe geblieben.

Damit ist aber auch versténdlich, wofiir der Begriff Transfer steht: Der Zugriff und die Ubertragung

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/lib/exe/detail.php?id=schulung%3Ahttp&media=schulung:http_req_resp_00.png

Last update: 2021/12/05 23:26 schulung:http https://schnipsl.qgelm.de/doku.php?id=schulung:http&rev=1638746767

einzelner Dokumente, z.B. HTML Dokumente, die in sich ja Verweise (Links) auf andere Dokumente
mittels HTTP Zugriff enthalten kdnnen.

Was macht es dann zu einem Protokoll?

Das Zusammenspiel zwischen dem Browser und dem Server folgt dem allereinfachsten Muster
bidirektionaler Kommunikation:

Frage / Antwort, das heilSt im Fachjargon Request / Response Server Client

i Request
E—

]
i Response

Server Client

1. Der Browser (ein TCP-Client) stellt dem Server eine wohldefinierte Anfrage.

2. Der Server antwortet auf demselben TCP-Kommuniationskanal exakt auf diese Anfrage mit
einem Status-Code (OK oder irgend ein Fehler) und in einem und in einem Rutsch mit dem
angefragten Inhalt.

3. Danach wird der Kommunikationskanal wieder abgebaut (so war das zumindest ganz zu Beginn,
mittlerweile wartet der Server auf der einmal aufgebauten TCP-Verbindung, ob der Browser
nicht direkt mehrere Requests loswerden mdchte, das ist effizienter)

Merke: Die ganze Logik steckt eigentlich im Browser, der Server reagiert nur und gibt stumpf zu
jeder einzelnen Anfrage das eine passende Dokument zuruck (oder reagiert mit einer
Fehlermeldung).

Ganz so einfach ist das heutzutage alles auch nicht mehr. Aber ein minimalistischer Webserver
kénnte genau so funktionieren. So ein Server ist beispielsweise ein sogenannter ,statischer”
Webserver, der Anfragen auf fest vorgegebene Inhalte oder an fixen Orten abgelegte Dokumente
abbildet und mit diesen Inhalten antwortet. Ein solches Verhaltnis zwischen Client und Server nennt
man auch zustandslos, weil der Response vollig unabhangig von der Vorgeschichte der
Kommunikation ausschlief8lich vom Inhalt des Requests abhangt: Gleiche Frage, gleiche Antwort!

Aber wie sieht ein wohldefinierter Request aus?

HTTP nutzt eine besonders einfache Art und Weise.Das hat den Vorteil, dass es sich leicht realisieren
lasst und weitgehend unabhangig von der zugrundeliegenden Technik ist: Menschenlesbarer Text!

Aber man muss sich an eine strikte Konvention halten, damit der Text der Anfrage/des Requests auch
von jeder Maschine einfach interpretiert werden kann und nicht kompliziert analysiert werden muss.
Folgende Regeln muss der Browser beim Zusammenbau des Request einhalten:

Der Text beginnt mit der ersten Zeile und dem ersten Zeichen, Leerzeichen sind Trenner zwischen
den einzelnen Bestandteilen. Das erste Wort ist ein Kommando, das beiden Seiten bekannt sein muss
und im jeweils aktuellen RFC definiert wird: GET, POST, HEAD usw. Danach folgt als zweites Wort die

https://schnipsl.qgelm.de/ Printed on 2026/01/21 22:03


https://schnipsl.qgelm.de/lib/exe/detail.php?id=schulung%3Ahttp&media=schulung:req_resp.png

2026/01/21 22:03 3/3 HTTP

sogenannte Ressource, also das Dokument, dass auf diesem Server angefragt wird. Das ist der
Mindestsatz an Informationen. Die Anfrage wird mit einer leeren Zeile beendet. Heutige Browser sind
auBerst geschwatzig und Ubermitteln dartber hinaus (also vor der Leerzeile) noch jede Menge
Zusatzinformation, die der Server bei der Auswahl und Zusammenstellung des Dokuments
hinzuziehen kann, praktisch alles davon ist aber optional bei der einfachsten Request-Form, dem GET.
Beispiele:

e HTTP Version (z.B. ,http/1.1)

Browser-Typ (z.B.,

Landessprache

unterstutzte Dokumenttypen (auSer HTML)
Cookie-Werte von vorherigen Besuchen dieses Servers

Ab HTTP 1.1 folgt nach der Zeile mit dem Kommando (also z.B. ,,GET /index.html“) immer eine Zeile,
aus der der Name des Servers, so wie der Browser ihn nennt, ablesbar ist:

Server: www.qgelm.de

zum Beispiel. Das hat erst mal nichts mit der IP-Adresse des Servers zu tun. Aber es ist durchaus
ublich, dass ein Server mit einer IP-Adresse verschieden Namen haben kann und verschieden
reagiert. Zum Zusammenhang des Namens mit der IP-Adresse gibt es hier einen kleinen Exkurs.

Kommen wir nach der Vorrede zu einem einfachen Beispiel eines statischen HTTP-Servers.

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=schulung:http&rev=1638746767

Last update: 2021/12/05 23:26

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/doku.php?id=schulung:dns
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=schulung:http&rev=1638746767

	HTTP
	Was macht einen Text zu einem Hypertext?
	Was macht es dann zu einem Protokoll?
	Aber wie sieht ein wohldefinierter Request aus?


