2026/01/21 22:02 1/5 HTTP

HTTP

Nachdem jetzt klar ist, wie grundsatzlich Inhalte zwischen zwei Rechnern gesprochen wird, wird es
etwas konkreter: Der Server ist jetzt der Web-Server und der Client ist der Web-Browser. Dafur
mussen sie sich auf eine gemeinsame

Sprache verabreden, das ist das i

-

Hypertext Transfer Protocol

Der Name scheint aus einer anderen Zeit zu stammen. Tatsachlich ist HTTP gar nicht so alt wie das
Internet:

e RFC 1945 HTTP/1.0 (1996)
e RFC 2616 HTTP/1.1 (1999)
e RFC 7540 HTTP/2 (2015)

Zu den einzelnen Bestandteilen des Worts:

Was macht einen Text zu einem Hypertext?

Es geht nicht nur um Text im landlaufigen Sinn. Der Text enthalt selbst noch Metadaten, die
Formatierung und Textsatz ermdglichen und (ganz wichtig) es sind Elemente mit Interaktion méglich.
Zuerst nur Links, die zu einem anderen Dokument verweisen, aber auch Formularelemente o0.a..

Der Name steht fur eine Gattung elektronischer Dokumente. Das prominenteste Format eines solchen
Dokumententyps ist HTML:

Hypertext Markup Language
Merke: Das ist kein Protokoll, das ist ein Dokumentenformat!

Das H in HTTP macht klar, dass das Protokoll unter anderem fir den Zugriff auf Dokumente diesen
Typs gebaut wurde. Es war und ist aber nicht die einzige Aufgabe geblieben.

Damit ist aber auch versténdlich, wofiir der Begriff Transfer steht: Der Zugriff und die Ubertragung

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/lib/exe/detail.php?id=schulung%3Ahttp&media=schulung:http_req_resp_00.png

Last update: 2021/12/06 22:18 schulung:http https://schnipsl.qgelm.de/doku.php?id=schulung:http&rev=1638829120

einzelner Dokumente, z.B. HTML Dokumente, die in sich ja Verweise (Links) auf andere Dokumente
mittels HTTP Zugriff enthalten kdnnen.

Was macht es dann zu einem Protokoll?

Das Zusammenspiel zwischen dem Browser und dem Server folgt dem allereinfachsten Muster
bidirektionaler Kommunikation:

Frage / Antwort, das heilSt im Fachjargon Request / Response Server Client

i Request
E—

]
i Response

Server Client

1. Der Browser (ein TCP-Client) stellt dem Server eine wohldefinierte Anfrage.

2. Der Server antwortet auf demselben TCP-Kommuniationskanal exakt auf diese Anfrage mit
einem Status-Code (OK oder irgend ein Fehler) und in einem und in einem Rutsch mit dem
angefragten Inhalt.

3. Danach wird der Kommunikationskanal wieder abgebaut (so war das zumindest ganz zu Beginn,
mittlerweile wartet der Server auf der einmal aufgebauten TCP-Verbindung, ob der Browser
nicht direkt mehrere Requests loswerden mdchte, das ist effizienter)

Merke: Die ganze Logik steckt eigentlich im Browser, der Server reagiert nur und gibt stumpf zu
jeder einzelnen Anfrage das eine passende Dokument zuruck (oder reagiert mit einer
Fehlermeldung).

Ganz so einfach ist das heutzutage alles auch nicht mehr. Aber ein minimalistischer Webserver
kénnte genau so funktionieren. So ein Server ist beispielsweise ein sogenannter ,statischer”
Webserver, der Anfragen auf fest vorgegebene Inhalte oder an fixen Orten abgelegte Dokumente
abbildet und mit diesen Inhalten antwortet. Ein solches Verhaltnis zwischen Client und Server nennt
man auch zustandslos, weil der Response vollig unabhangig von der Vorgeschichte der
Kommunikation ausschlief8lich vom Inhalt des Requests abhangt: Gleiche Frage, gleiche Antwort!

Aber wie sieht ein wohldefinierter Request aus?

HTTP nutzt eine besonders einfache Art und Weise: Menschenlesbarer Text!

Das hat den Vorteil, dass es sich leicht realisieren lasst und weitgehend unabhangig von der
zugrundeliegenden Technik ist.

Aber man muss sich an eine strikte Konvention halten, damit der Text der Anfrage/des Requests auch
von jeder Maschine einfach interpretiert werden kann und nicht kompliziert analysiert werden muss.
Folgende Regeln muss der Browser beim Zusammenbau des Request einhalten:

e Der Text beginnt mit der ersten Zeile und dem ersten Zeichen, Leerzeichen sind Trenner

https://schnipsl.qgelm.de/ Printed on 2026/01/21 22:02


https://schnipsl.qgelm.de/lib/exe/detail.php?id=schulung%3Ahttp&media=schulung:req_resp.png

2026/01/21 22:02 3/5 HTTP

zwischen den einzelnen Bestandteilen.

e Das erste Wort ist ein Kommando, das beiden Seiten bekannt sein muss und im jeweils
aktuellen RFC definiert wird: GET, POST, HEAD sind das bei Version 1.0.

e Danach folgt als zweites Wort die sogenannte Ressource, also das Dokument, dass auf diesem
Server angefragt wird.

e Zum Schluss wird die HTTP-Version genannt: HTTP/1.0 z.B.

Das ist der Mindestsatz an Informationen. Die Anfrage wird mit einer leeren Zeile beendet.

Je nach HTTP Version kdnnen zwischen der ersten Zeile und der Leerzeile noch weitere sogenannte
HTTP-Header-Zeilen eingebaut sein. Die sind optional, erleichtern dem Server aber eventuell etwas
die Arbeit. Bei HTTP/1.0 waren das u.a.:

e User-Agent: Eine Bezeichnung flr den Browser und die Version (z.B. User-Agent:
Mozilla/5.0)
e Referer: Die URL der Webseite, die diesen Request ausgeldst hat

Ab HTTP 1.1 folgt nach der Zeile mit dem Kommando (also z.B. ,,GET /index.html HTTP/1.1“) immer
eine Zeile, aus der der Name des Servers, so wie der Browser ihn nennt, ablesbar ist:

Host: www.qgelm.de

zum Beispiel. Es ist durchaus Ublich, dass ein Server mit einer IP-Adresse verschiedene Namen haben
kann und je nach Namen verschieden reagiert. Zum Zusammenhang des Namens mit der IP-Adresse
gibt es hier einen kleinen Exkurs.

Der Server schaut dann, wie er den Inhalt der angeforderten Ressource bekommt und packt das wie

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/lib/exe/detail.php?id=schulung%3Ahttp&media=schulung:http_req_resp_01.png
https://schnipsl.qgelm.de/doku.php?id=schulung:dns

Last update: 2021/12/06 22:18

schulung:http https://schnipsl.qgelm.de/doku.php?id=schulung:http&rev=1638829120

folgt in seinen Response:

1
ﬁ

-"f'aE"l"’ _,{5,3;,&4 é#ﬂr";’?’ -'54-;-1-1# |

\Mf%

R 2z
-|

e Er nennt das verwendete Protokoll mit Version also z.B. http/1.1).

e Wenn alles glatt lief folgt dann der Statuscode mit Zahl und Kurzbeschreibung 200 OK.

¢ Bis hier war alles in einer Zeile. Die nachsten Zeilen kdnnen dann weitere sogenannte HTTP-
Header enthalten, sind aber optional.

¢ Die eigentlich Ubermittelte Ressource folgt dann nach einer Leerzeile und wird einfach Byte fur

Byte angehangt.

Der RFC flr Version 1.0 definiert den Ubermittelten Statuscode Ubrigens so:

Status-Code = "200"
| "201"
| "202"
| "204"
| "301"
| "302"
| "304"
| "400"
| "401"
| "403"
| "404"
| "500"
| "501"
| "502"
| "503"

; OK

Created

; Accepted

No Content

; Moved Permanently
; Moved Temporarily

Not Modified

Bad Request
Unauthorized
Forbidden

Not Found

Internal Server Error
Not Implemented

Bad Gateway

Service Unavailable

Wenn man nicht (unbemerkt) meistens den Status 200 OK auslost, dann ist wohl der am meisten
beachtete Status 404 Not Found. Das passiert immer, wenn die angeforderte Ressource fur den
Server nicht auffindbar ist, also z.B. der Link auf einer Webseite veraltet ist oder ein Vertipper passiert

ist.

Kommen wir nach der Vorrede zu einem einfachen Beispiel eines statischen HTTP-Servers.

https://schnipsl.qgelm.de/

Printed on 2026/01/21 22:02


https://schnipsl.qgelm.de/lib/exe/detail.php?id=schulung%3Ahttp&media=schulung:http_req_resp_02.png
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server

2026/01/21 22:02 5/5

HTTP

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=schulung:http&rev=1638829120

Last update: 2021/12/06 22:18

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=schulung:http&rev=1638829120

	HTTP
	Was macht einen Text zu einem Hypertext?
	Was macht es dann zu einem Protokoll?
	Aber wie sieht ein wohldefinierter Request aus?


