2026/01/21 22:02 1/2 Do-it-yourself: Statischer HTTP-Server

Do-it-yourself: Statischer HTTP-Server

Wir verwenden wieder einmal die Programmiersprache Python. Die Socket-Programmierschnittstelle
haben wir ja schon hier kennengelernt. Deswegen steigen wir direkt in den Code ein:

socket

Allgemeine Defiitionen:
SERVER HOST '0.0.0.0"' # d.h. alle Netzwerkschnittstellen des Rechners
SERVER PORT = 8000 # nur im Beispiel, per Konvention geht http uber Port 80

Wir binden uns an einen Socket
socket.socket (socket.AF INET, socket.SOCK STREAM server_socket:

server _socket.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR, 1
server_socket.bind((SERVER HOST, SERVER PORT
server_socket.listen(1

‘Lausche auf Port %s ...' % SERVER PORT

Abarbeiten aller Client-Anfragen in einer Endlosschleife:
True:

hier warten wir auf den ersten Client
client connection, client address = server_socket.accept

da hat einer angebissen, jetzt die Daten des Requests:
request client connection.recv(1024).decode
request

Und unser HTTP Response dazu:

response "HTTP/1.0 200 OK\n\nHallo Welt\n\n'
client connection.sendall(response.encode
client connection.close

Wenn die Endlosschleife am Ende ist...
server_socket.close

Das ist der allereinfachste statische Webserver. Es wird immer (egal welche Ressource angefordert
wurde) Das (Pseudo-)Dokument ,Hallo Welt” zurtckgeliefert.

Den Kommunikationsablauf schauen wir uns trotzdem mal in der Konsole (wieder mit
Rechtskick+Neues Fenster) an:

Server starten mit

cd Schulung
python3 hello http.py

und in einer zweiten Konsole:

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/doku.php?id=schulung:tcp_beispiel
https://qgelm.de/siab/

Last update:
2021/12/02 schulung:statischer_http_server https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1638459890
15:44

telnet 127.0.0.1 8000

GET /irgendwas HTTP/1.0

Und dabei nach dem GET nicht die leere Zeile vergessen!

So, das war nur zu Demonstrationszwecken. Dieser Code prift nicht einmal auf korrekte Syntax des

2
Requests (warum auch ¥).

Diese Bedienung der Socket-Schnittstelle UND die korrekte Behandlung der Requests gibt es in
Python auch fertig verpackt zur leichteren Nutzung:

cd Schulung/web
python3 -m http.server 8000

Dabei wird die Ressource nach GET wie folgt interpretiert:

* Falls eine Datei in dem aktuellen Verzeichnis existiert, deren Name auf die Ressource passt,
dann wird 200 OK mit dem Inhalt der Datei als Response zurtickgeschickt.

e Wenn die Ressource das Zeichen / enthalt, dann wird das wie Namen von Unterverzeichnissen
behandelt und die passende Datei aus dem Unterverzeichnis gesendet

e Wenn die Ressource genau auf ein Verzeichnis (einschlieBlich / fur das aktuelle), dann wird die
Datei mit dem Namen index.html als die eigentlich gewlnschte Ressource angenommen.

e Ansonsten wird eine Fehlermeldung in den Response gepackt: 404 Not found

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http _server&rev=1638459890]

Last update: 2021/12/02 15:44

https://schnipsl.qgelm.de/ Printed on 2026/01/21 22:02

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1638459890

	Do-it-yourself: Statischer HTTP-Server

