
2026/01/21 22:02 1/2 Do-it-yourself: Statischer HTTP-Server

Qgelm - https://schnipsl.qgelm.de/

Do-it-yourself: Statischer HTTP-Server

Wir verwenden wieder einmal die Programmiersprache Python. Die Socket-Programmierschnittstelle
haben wir ja schon hier kennengelernt. Deswegen steigen wir direkt in den Code ein:

import socket

Allgemeine Defiitionen:
SERVER_HOST = '0.0.0.0' # d.h. alle Netzwerkschnittstellen des Rechners
SERVER_PORT = 8000 # nur im Beispiel, per Konvention geht http über Port 80

Wir binden uns an einen Socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as server_socket:

 server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 server_socket.bind((SERVER_HOST, SERVER_PORT))
 server_socket.listen(1)
 print('Lausche auf Port %s ...' % SERVER_PORT)

 # Abarbeiten aller Client-Anfragen in einer Endlosschleife:
 while True:
 # hier warten wir auf den ersten Client
 client_connection, client_address = server_socket.accept()

 # da hat einer angebissen, jetzt die Daten des Requests:
 request = client_connection.recv(1024).decode()
 print(request)

 # Und unser HTTP Response dazu:
 response = 'HTTP/1.0 200 OK\n\nHallo Welt\n\n'
 client_connection.sendall(response.encode())
 client_connection.close()

Wenn die Endlosschleife am Ende ist...
server_socket.close()

Das ist der allereinfachste statische Webserver. Es wird immer (egal welche Ressource angefordert
wurde) Das (Pseudo-)Dokument „Hallo Welt“ zurückgeliefert.

Den Kommunikationsablauf schauen wir uns trotzdem mal in der Konsole (wieder mit
Rechtskick+Neues Fenster) an:

Server starten mit

cd Schulung
python3 hello_http.py

und in einer zweiten Konsole:

https://schnipsl.qgelm.de/doku.php?id=schulung:tcp_beispiel
https://qgelm.de/siab/

Last update:
2021/12/02
15:44

schulung:statischer_http_server https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1638459890

https://schnipsl.qgelm.de/ Printed on 2026/01/21 22:02

telnet 127.0.0.1 8000
...
GET /irgendwas HTTP/1.0

...

Und dabei nach dem GET nicht die leere Zeile vergessen!

So, das war nur zu Demonstrationszwecken. Dieser Code prüft nicht einmal auf korrekte Syntax des

Requests (warum auch).

Diese Bedienung der Socket-Schnittstelle UND die korrekte Behandlung der Requests gibt es in
Python auch fertig verpackt zur leichteren Nutzung:

cd Schulung/web
python3 -m http.server 8000

Dabei wird die Ressource nach GET wie folgt interpretiert:

Falls eine Datei in dem aktuellen Verzeichnis existiert, deren Name auf die Ressource passt,
dann wird 200 OK mit dem Inhalt der Datei als Response zurückgeschickt.
Wenn die Ressource das Zeichen / enthält, dann wird das wie Namen von Unterverzeichnissen
behandelt und die passende Datei aus dem Unterverzeichnis gesendet
Wenn die Ressource genau auf ein Verzeichnis (einschließlich / für das aktuelle), dann wird die
Datei mit dem Namen index.html als die eigentlich gewünschte Ressource angenommen.
Ansonsten wird eine Fehlermeldung in den Response gepackt: 404 Not found

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1638459890

Last update: 2021/12/02 15:44

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1638459890

	Do-it-yourself: Statischer HTTP-Server

