2026/01/21 22:02 1/2 Do-it-yourself: Statischer HTTP-Server

Do-it-yourself: Statischer HTTP-Server

Wir verwenden wieder einmal die Programmiersprache Python. Die Socket-Programmierschnittstelle
haben wir ja schon hier kennengelernt. Deswegen steigen wir direkt in den Code ein:

socket

Allgemeine Defiitionen:
SERVER HOST '0.0.0.0"' # d.h. alle Netzwerkschnittstellen des Rechners
SERVER PORT = 8000 # nur im Beispiel,

per Konvention geht http uber Port
80

Wir binden uns an einen Socket
socket.socket(socket.AF INET, socket.SOCK STREAM server socket:

server_socket.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR, 1
server_socket.bind((SERVER HOST, SERVER PORT
server socket.listen(1

‘Lausche auf Port %s ...' % SERVER PORT

Abarbeiten aller Client-Anfragen in einer Endlosschleife:
True:
hier warten wir auf den ersten Client
client connection, client address = server socket.accept

da hat einer angebissen, jetzt die Daten des Requests:
request = client connection.recv(1024).decode
request

Und unser HTTP Response dazu:

response '"HTTP/1.0 200 OK\n\nHallo Welt\n\n'
#

\n ist das Sonderzeichen fiir Zeilenende
#

client connection.sendall(response.encode
client connection.close

Wenn die Endlosschleife am Ende ist...
server _socket.close

Das ist der allereinfachste statische Webserver. Es wird immer (egal welche Ressource angefordert
wurde) Das (Pseudo-)Dokument ,Hallo Welt“ zurlckgeliefert.

Den Kommunikationsablauf schauen wir uns trotzdem mal in der Konsole (wieder mit
Rechtsklick+Neues Fenster) an:

Server starten mit

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/doku.php?id=schulung:tcp_beispiel
https://qgelm.de/siab/

Last update:
2021/12/06 schulung:statischer_http_server https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1638829590
22:26

cd Schulung
python3 hello http.py

und in einer zweiten Konsole:
telnet 127.0.0.1 8000

GET /irgendwas HTTP/1.0

Und dabei nach dem GET nicht die leere Zeile vergessen!

So, das war nur zu Demonstrationszwecken. Dieser Code pruft nicht einmal auf korrekte Syntax des
T~
[)

Requests (warum auch ¥).

Ein korrekter Web-Server wirde die Request-Zeile (,GET /...“) auf den geforderten Aufbau hin
Uberprufen und interpretieren.

Die eigentliche Aufgabe besteht aber darin, je nach Request-Kommando und der angefragten
Ressource den Inhalt nach der Leerzeile des Response zusammenzutragen.

Wir nehmen hier immer die einfachste Form des Request, das GET. Der Vollstandigkeit halber ein paar
Worte zu den anderen Request-Typen:

e HEAD: Spezialform des GET, es soll kein Inhalt Ubertragen werden. Der Browser will hier nur
nachschauen, ob sich zwischenzeitlich an der Ressource etwas geandert hat oder ob ein
erneutes GET gespart werden kann.

e POST: Das ist die Form eines Requests, wenn der Browser dem Server auch noch Daten
schicken will. Die kdnnen aus Formulareingabefeldern aus der Webseite stammen oder
beispielsweise ein Datei zum Hochladen sein. Offensichtlich hat der Server dann etwas mehr zu
tun. Die Daten werden auch hier nach der Leerzeile hinter der Requestzeile angehangt. Details
dazu spare ich mir hier.

e In spateren HTTP-Versionen kommen weitere Requesttypen dazu: PUT, DELETE, ... Die spielen
aber beim Web-Surfen auch keine bedeutende Rolle.

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=163882959

Last update: 2021/12/06 22:26

https://schnipsl.qgelm.de/ Printed on 2026/01/21 22:02

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1638829590

	Do-it-yourself: Statischer HTTP-Server

