2026/01/21 22:02 1/3 Do-it-yourself: Statischer HTTP-Server

Do-it-yourself: Statischer HTTP-Server

Wir verwenden wieder einmal die Programmiersprache Python. Die Socket-Programmierschnittstelle
haben wir ja schon hier kennengelernt. Deswegen steigen wir direkt in den Code ein:

socket

Allgemeine Defiitionen:
SERVER HOST '0.0.0.0"' # d.h. alle Netzwerkschnittstellen des Rechners
SERVER PORT = 8000 # nur im Beispiel,

per Konvention geht http uber Port 80

Wir binden uns an einen Socket
socket.socket(socket.AF INET, socket.SOCK STREAM server_socket:

server _socket.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR, 1
server_socket.bind((SERVER HOST, SERVER PORT
server socket.listen(1

‘Lausche auf Port %s ...' % SERVER PORT

Abarbeiten aller Client-Anfragen in einer Endlosschleife:
True:
hier warten wir auf den ersten Client
client connection, client address = server_socket.accept

da hat einer angebissen, jetzt die Daten des Requests:
request client connection.recv(1024).decode("utf-8"
request

Und unser HTTP Response dazu:

response "HTTP/1.0 200 OK\n\nHallo Welt\n\n'
#

\n ist das Sonderzeichen fur Zeilenende
#

client connection.sendall(response.encode("utf-8"
client connection.close

Wenn die Endlosschleife am Ende ist...
server socket.close

Das ist der allereinfachste statische Webserver. Es wird immer (egal welche Ressource angefordert
wurde) Das (Pseudo-)Dokument ,Hallo Welt” zurtckgeliefert.

Den Kommunikationsablauf schauen wir uns trotzdem mal in der Konsole (wieder mit
Rechtsklick+Neues Fenster) an:

Server starten mit

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/doku.php?id=schulung:tcp_beispiel
https://qgelm.de/siab/

Last update:
2022/01/11 schulung:statischer_http_server https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1641916429
15:53

cd Schulung
python3 hello http.py

und in einer zweiten Konsole:
telnet 127.0.0.1 8000

GET /irgendwas HTTP/1.0

Und dabei nach dem GET nicht die leere Zeile vergessen!

So, das war nur zu Demonstrationszwecken. Dieser Code pruft nicht einmal auf korrekte Syntax des
T~
[)

Requests (warum auch ¥).

Ein korrekter Web-Server wirde die Request-Zeile (,GET /...“) auf den geforderten Aufbau hin
Uberprufen und interpretieren.

Die eigentliche Aufgabe besteht aber darin, je nach Request-Kommando und der angefragten
Ressource den Inhalt nach der Leerzeile des Response zusammenzutragen.

Wir nehmen hier immer die einfachste Form des Request, das GET. Der Vollstandigkeit halber ein paar
Worte zu den anderen Request-Typen:

e HEAD: Spezialform des GET, es soll kein Inhalt Ubertragen werden. Der Browser will hier nur
nachschauen, ob sich zwischenzeitlich an der Ressource etwas geandert hat oder ob ein
erneutes GET gespart werden kann.

e POST: Das ist die Form eines Requests, wenn der Browser dem Server auch noch Daten
schicken will. Die kdnnen aus Formulareingabefeldern aus der Webseite stammen oder
beispielsweise ein Datei zum Hochladen sein. Offensichtlich hat der Server dann etwas mehr zu
tun. Die Daten werden auch hier nach der Leerzeile hinter der Requestzeile angehangt. Details
dazu spare ich mir hier.

e In spateren HTTP-Versionen kommen weitere Request-Typen dazu: PUT, DELETE, ... Die spielen
aber beim Web-Surfen auch keine bedeutende Rolle.

Zu Ubungszwecken ersetzen wir den etwas zu einfachen HTTP Server von eben mit dem nachst
einfachen Modell, das jede Ressource in der URL als Dateinamen im aktuellen Verzeichnis
interpretiert:

cd ~/Schulung/html
echo "Dies ist ein Test." > test.txt
python3 -m http.server 8000

und auf der Client Seite verwenden wir jetzt auch mal ein etwas leistungsstarkeres Erprobungstool:
curl verhalt sich wie ein richtiger Browser, gibt aber alle Request-Inhalte direkt als Text im Terminal
aus. Beachte das -v! Damit wird die eigentliche http-Kommunikation mit rausgeschrieben,
einschlielllich aller Header-Zeilen:

https://schnipsl.qgelm.de/ Printed on 2026/01/21 22:02

2026/01/21 22:02 3/3 Do-it-yourself: Statischer HTTP-Server

curl -v http://localhost:8000/test.txt

Das Ergebnis sieht dann in Summe etwa so aus:

=» html echo " =" > test.txt =» ~ curl -v http://127.6.0.1:8000/test.txt
=» html python3 -m http.server 8800 * Trying 127.6.0.1:80e€e...
Serving HTTP on 6.0.0.8 port 8068 (http://0.0.6.8:8000/) ... * TCP_NODELAY set
127.0.8.1 - - [11/Jan/2022 16:43:39] “"GET /test.txt HTTP/1.1" 200 - * Connected to 127.8.6.1 (127.8.0.1) port 8066 (#8)
> GET /test.txt HTTP/1.1
> Host: 127.0.0.1:80600
> User-Agent: curl/7.68.0
> Accept: */*
>
* Mark bundle as not supporting multiuse
* HTTP 1.8, assume close after body
< HTTP/1.8 288 OK
< Server: SimpleHTTP/@.6 Python/3.8.1@
< Date: Tue, 11 Jan 2622 15:43:39 GMT
< Content-type: text/plain
< Content-Length: 18
< Last-Modified: Tue, 11 Jan 2822 15:43:16 GMT

<

[
* Closing connection @
-1

Im wirklichen Leben macht sich ein richtiger Web-Server etwas mehr Arbeit bei seinem Response...

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link: ;.
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1641916429 l+

Last update: 2022/01/11 15:53

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/lib/exe/fetch.php?media=schulung:curl.png
https://schnipsl.qgelm.de/doku.php?id=schulung:http_real_server
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1641916429

	Do-it-yourself: Statischer HTTP-Server

