
2026/01/21 22:02 1/3 Do-it-yourself: Statischer HTTP-Server

Qgelm - https://schnipsl.qgelm.de/

Do-it-yourself: Statischer HTTP-Server

Wir verwenden wieder einmal die Programmiersprache Python. Die Socket-Programmierschnittstelle
haben wir ja schon hier kennengelernt. Deswegen steigen wir direkt in den Code ein:

import socket

Allgemeine Defiitionen:
SERVER_HOST = '0.0.0.0' # d.h. alle Netzwerkschnittstellen des Rechners
SERVER_PORT = 8000 # nur im Beispiel,
 # per Konvention geht http über Port 80

Wir binden uns an einen Socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as server_socket:

 server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 server_socket.bind((SERVER_HOST, SERVER_PORT))
 server_socket.listen(1)
 print('Lausche auf Port %s ...' % SERVER_PORT)

 # Abarbeiten aller Client-Anfragen in einer Endlosschleife:
 while True:
 # hier warten wir auf den ersten Client
 client_connection, client_address = server_socket.accept()

 # da hat einer angebissen, jetzt die Daten des Requests:
 request = client_connection.recv(1024).decode("utf-8")
 print(request)

 # Und unser HTTP Response dazu:
 response = 'HTTP/1.0 200 OK\n\nHallo Welt\n\n'
 #
 # \n ist das Sonderzeichen für Zeilenende
 #
 client_connection.sendall(response.encode("utf-8"))
 client_connection.close()

Wenn die Endlosschleife am Ende ist...
server_socket.close()

Das ist der allereinfachste statische Webserver. Es wird immer (egal welche Ressource angefordert
wurde) Das (Pseudo-)Dokument „Hallo Welt“ zurückgeliefert.

Den Kommunikationsablauf schauen wir uns trotzdem mal in der Konsole (wieder mit
Rechtsklick+Neues Fenster) an:

Server starten mit

https://schnipsl.qgelm.de/doku.php?id=schulung:tcp_beispiel
https://qgelm.de/siab/

Last update:
2022/01/11
15:53

schulung:statischer_http_server https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1641916429

https://schnipsl.qgelm.de/ Printed on 2026/01/21 22:02

cd Schulung
python3 hello_http.py

und in einer zweiten Konsole:

telnet 127.0.0.1 8000
...
GET /irgendwas HTTP/1.0

...

Und dabei nach dem GET nicht die leere Zeile vergessen!

So, das war nur zu Demonstrationszwecken. Dieser Code prüft nicht einmal auf korrekte Syntax des

Requests (warum auch).

Ein korrekter Web-Server würde die Request-Zeile („GET /…“) auf den geforderten Aufbau hin
überprüfen und interpretieren.

Die eigentliche Aufgabe besteht aber darin, je nach Request-Kommando und der angefragten
Ressource den Inhalt nach der Leerzeile des Response zusammenzutragen.

Wir nehmen hier immer die einfachste Form des Request, das GET. Der Vollständigkeit halber ein paar
Worte zu den anderen Request-Typen:

HEAD: Spezialform des GET, es soll kein Inhalt übertragen werden. Der Browser will hier nur
nachschauen, ob sich zwischenzeitlich an der Ressource etwas geändert hat oder ob ein
erneutes GET gespart werden kann.
POST: Das ist die Form eines Requests, wenn der Browser dem Server auch noch Daten
schicken will. Die können aus Formulareingabefeldern aus der Webseite stammen oder
beispielsweise ein Datei zum Hochladen sein. Offensichtlich hat der Server dann etwas mehr zu
tun. Die Daten werden auch hier nach der Leerzeile hinter der Requestzeile angehängt. Details
dazu spare ich mir hier.
In späteren HTTP-Versionen kommen weitere Request-Typen dazu: PUT, DELETE, … Die spielen
aber beim Web-Surfen auch keine bedeutende Rolle.

Zu Übungszwecken ersetzen wir den etwas zu einfachen HTTP Server von eben mit dem nächst
einfachen Modell, das jede Ressource in der URL als Dateinamen im aktuellen Verzeichnis
interpretiert:

cd ~/Schulung/html
echo "Dies ist ein Test." > test.txt
python3 -m http.server 8000

und auf der Client Seite verwenden wir jetzt auch mal ein etwas leistungsstärkeres Erprobungstool:
curl verhält sich wie ein richtiger Browser, gibt aber alle Request-Inhalte direkt als Text im Terminal
aus. Beachte das -v! Damit wird die eigentliche http-Kommunikation mit rausgeschrieben,
einschließlich aller Header-Zeilen:

2026/01/21 22:02 3/3 Do-it-yourself: Statischer HTTP-Server

Qgelm - https://schnipsl.qgelm.de/

curl -v http://localhost:8000/test.txt

Das Ergebnis sieht dann in Summe etwa so aus:

Im wirklichen Leben macht sich ein richtiger Web-Server etwas mehr Arbeit bei seinem Response…

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1641916429

Last update: 2022/01/11 15:53

https://schnipsl.qgelm.de/lib/exe/fetch.php?media=schulung:curl.png
https://schnipsl.qgelm.de/doku.php?id=schulung:http_real_server
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=schulung:statischer_http_server&rev=1641916429

	Do-it-yourself: Statischer HTTP-Server

