2025/10/16 06:56 1/22 A Look at the Design of Lua

A Look at the Design of Lua

Originalartikel
Backup

<html> By Roberto lerusalimschy, Luiz Henrique De Figueiredo, Waldemar
Celes
Communications of the ACM, November 2018, Vol. 61 No. 11, Pages
114-123
10.1145/3186277
<a
href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#commen
ts“>Comments<div class=,fav_bar“>View as: <a

href=, https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#“
onclick=,javascript:window.print();“ class=,fav_print“ title=, Print“>Print <a

href=, https://cacm.acm.org/about-communications/mobile-apps/* class=, mobile-apps” title=, MOBILE
APPS“>Mobile App <a
href=,,https://dl.acm.org/citation.cfm?id=3289258.3186277&coll=portal&dI=ACM*“
class=,fav_acm_digital” target=,_blank" title=,View in ACM Digital Library“>ACM Digital Library
<a href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/pdf*
class=,fav_pdf“ rel=,nofollow” target=,_blank" title=,View as PDF“>Full Text (PDF) <a
href=,https://dl.acm.org/ft_gateway.cfm?id=3186277&ftid=2012300&dwn=1"
class=,fav_de” target=, blank” title=,View in Digital Edition“>In the Digital Edition Share: Send by
email <a href=,javascript:void(0);“ class=,fav_reddit” onclick=,addthis_sendto('reddit');"
title=,Share on reddit“>Share on reddit <a href=,javascript:void(0);“ class=,fav_su“
onclick=,addthis_sendto('stumbleupon');“ title=,Share on StumbleUpon“>Share on
StumbleUpon <a href=,javascript:void(0);“ class=,fav_facebook”
onclick=,addthis_sendto('facebook');" title=,Share on Facebook”>Share on Facebook <p><a
href=,,https://www.addthis.com/bookmark.php?v=250&pubid=xa-4dcbeff2515fc93c"
class=,addthis_button_compact fav_more no_border“>Share</p> </div> <div
class=,imageWithCaptionLeft” id=,asset-32944“> <figure><img alt=, A Look at the Design of Lua,
illustration”
src=,https://cacm.acm.org/system/assets/0003/2944/102218 CACMpgl15 Design-of-Lua.large.jpg?15
40239819&1540239818“ title=, A Look at the Design of Lua, illustration“/><figcaption><p
class=,credit“>Credit: Bug Fish</p> </figcaption></figure></div> <iframe
src=,https://player.vimeo.com/video/292779036" width=,640" height=,360" frameborder=,0“
webkitallowfullscreen=,,“ mozallowfullscreen=," allowfullscreen=, allowfullscreen“> </iframe>
<p>Lua is a scripting language developed at the Pontifical Catholic University of Rio de Janeiro (PUC-
Rio) that has come to be the leading scripting language for video games worldwide.™*

href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R3“>3,<a

It is also used extensively in embedded
devices like set-top boxes and TVs and in other applications like Adobe Photoshop Lightroom and
Wlklped|a14 |tS ﬁrst VerS|On was released
in 1993. The current version, Lua 5.3, was released in 2015.</p> <p><a

href=, https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>Key Insights</h3> <p><img alt=,ins01.gif"
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/ins01.gif“/></p> <p>Though mainly
a procedural language, Lua lends itself to several other paradigms, including object-oriented
programming, functional programming, and data-driven programming.**
href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R5“>5 |t also Oﬁ:ers gOOd Support for data
description, in the style of JavaScript and JSON. Data description was indeed one of our main

href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R7“>7

Qgelm - https://schnipsl.qgelm.de/

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext
https://www.qgelm.de/wb2html/wb459.html
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#comments
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#comments
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#
https://cacm.acm.org/about-communications/mobile-apps/
https://dl.acm.org/citation.cfm?id=3289258.3186277&coll=portal&dl=ACM
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/pdf
https://dl.acm.org/ft_gateway.cfm?id=3186277&ftid=2012300&dwn=1
https://www.addthis.com/bookmark.php?v=250&pubid=xa-4dcbeff2515fc93c
https://cacm.acm.org/system/assets/0003/2944/102218_CACMpg115_Design-of-Lua.large.jpg?1540239819&1540239818
https://cacm.acm.org/system/assets/0003/2944/102218_CACMpg115_Design-of-Lua.large.jpg?1540239819&1540239818
https://player.vimeo.com/video/292779036
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R3
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R7
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R14
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
http://deliveryimages.acm.org/10.1145/3190000/3186277/ins01.gif
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R5

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

motivations for creating Lua, some years before the appearance of XML and JavaScript.</p> <p>Our
motto in the design of Lua has always been ,mechanisms instead of policies.” By policy, we mean a
methodical way of using existing mechanisms to build a new abstraction. Encapsulation in the C
language provides a good example of a policy. The ISO C specification offers no mechanism for
mOduleS or interfaces.9 Nevertheless, C
programmers leverage existing mechanisms (such as file inclusion and external declarations) to
achieve those abstractions. On top of such basic mechanisms provided by the C language, policy adds
several rules (such as ,all global functions should have a prototype in a header file“ and , header files
should not define objects, only declare them*). Many programmers do not know these rules (and the
policy as a whole) are not part of the C language.</p> <p>Accordingly, in the design of Lua, we have
replaced addition of many different features by creating instead only a few mechanisms that allow
programmers to implement such features themselves.**
href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R6“>6 The motto leads to a design that is
economical in concepts. Lua offers exactly one general mechanism for each major aspect of
programming: tables for data; functions for abstraction; and coroutines for control. On top of these
building blocks, programmers implement several other features, including modules, objects, and
environments, with the aid of minimal additions (such as syntactic sugar) to the language. Here, we
look at how this motto has worked out in the design of Lua.</p> <p><a

href=, https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>Design Goals</h3> <p>Like other scripting
languages, Lua has dynamic types, dynamic data structures, garbage collection, and an eval-like
functionality. Consider Lua's particular set of goals:</p> <p>Simplicity. Lua aims to
offer only a few powerful mechanisms that can address several different needs, instead of myriad
specific language constructs, each tailored for a specific need. The Lua reference manual is small,
with approximately 100 pages covering the language, its standard libraries, and the APl with C;</p>
<p>Small size. The entire implementation of Lua consists of 25,000 lines of C code; the
binary for 64-bit Linux has 200k bytes. Being small is important for both portability, as Lua must fit
into a system before running there, and embedding, as it should not bloat the host application that
embeds it;</p> <p>Portability. Lua is implemented in ISO C and runs in virtually any
system with as little as 300k bytes of memory. Lua runs in all mainstream systems and also on
mainframes, inside OS kernels (such as the NetBSD kernel), and on ,bare metal“ (such as NodeMCU
running on the ESP8266 microcontroller); and</p> <p>Embeddability. Lua was
designed since its inception to interoperate with other languages, both by extending—allowing
Lua code to call functions written in a foreign language—and by embedding—allowing
foreign code to call functions written in Lua,<® "ef=-"es//cacm.acm.oro/magazines/2018/11/232214-a-look-at:the-design-of
walliltext#R8">8<2> | ya is thus implemented not as a standalone program but as a library with a C API. This
library exports functions that create a new Lua state, load code into a state, call functions loaded into
a state, access global variables in a state, and perform other basic tasks. The standalone Lua
interpreter is a tiny application written on top of the library.</p> <p>These goals have had a deep
impact on our design of Lua. Portability restricts what the standard libraries can offer to what is
available in ISO C, including date and time, file and string manipulation, and basic mathematical
functions. Everything else must be provided by external libraries. Simplicity and small size restrict the
language as a whole. These are the goals behind the economy of concepts for the language.
Embeddability has a subtler influence. To improve embeddability, Lua favors mechanisms that can be
represented naturally in the Lua-C API. For instance, Lua tries to avoid or reduce the use of special
syntax for a new mechanism, as syntax is not accessible through an API. On the other hand,
mechanisms exposed as functions are naturally mapped to the APl.</p> <p>Following the motto
~mechanisms instead of policies” has a clear impact on simplicity and small size. It also affects
embeddability by breaking complex concepts into simpler ones that are easier to represent in the
APIl.</p> <p>Lua supports eight data types: nil, boolean, number, string, userdata, table, function,

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R9
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R6
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R8
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R8

2025/10/16 06:56 3/22 A Look at the Design of Lua

and thread, which represents coroutines. The first five are no surprise. The last three give Lua its
flavor and are the ones we discuss here. However, given the importance of embeddability in the
design of Lua, we first briefly introduce the interface between Lua and its host language.</p> <p><a
href=, https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>The Lua-C API</h3> <p>To illustrate the concept
of embedding in Lua, consider a simple example of a C program using the Lua library. Take this tiny
Lua script, stored in a file</p> <blockquote readability=,4"> <p>

pi = 4 * math.atan(1)

</p> </blockquote> <p><a href=,,http://deliveryimages.acm.org/10.1145/3190000/3186277/f1.jpg"
onclick=,, window.open(this.href, ,

'resizable=yes, status=no, location=no,toolbar=no,menubar=no, fullscreen=no,scro
1lbars=no,dependent=no,width=1021,height=700"'); return false;“>Figure 1l
shows a C program that runs the script and prints the value of
<code>pi</code>. The first task is to create a new state and populate it with
the functions from the standard libraries (such as <code>math.atan</code>).
The program then calls <code>luaL _ loadfile</code> to <code>load</code>
(precompile) the given source file into this state. In the absence of errors,
this call produces a Lua function that is then executed by <code>lua
pcall.</code> If either <code>loadfile</code> or <code>pcall</code> raises an
error, it produces an error message that is printed to the terminal.
Otherwise, the program gets the value of the global variable <code>pi</code>
and prints its value.</p> <p><a
href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f1.jpg"
onclick=,window.open(this.href, ,
'resizable=yes,status=no,location=no,toolbar=no,menubar=no,fullscreen=no,scrollbars=no,depende
nt=no,width=1021,height=700'); return false;“><img alt=,f1.jpg" height=,285"
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f1.jpg"
width=,415"“/>
Figure 1. A C program using the Lua library.</p>
<p>The data exchange among these API calls is done through an implicit stack in the Lua state. The
call to

luaL _ loadfile

pushes on the stack either a function or an error message. The call to
lua pcall

pops the function from the stack and calls it. The call to

lua getglobal

pushes the value of the global variable. The call to

lua tonumber

projects the Lua value on top of the stack to a

double

Qgelm - https://schnipsl.qgelm.de/

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
http://deliveryimages.acm.org/10.1145/3190000/3186277/f1.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f1.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f1.jpg

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

. The stack ensures these values remain visible to Lua while being manipulated by the C code so they
cannot be collected by Lua's garbage collector.</p> <p>Besides the functions used in this simple
example, the Lua-C API (or ,,C API“ for short) offers functions for all kinds of manipulation of Lua
values, including pushing C values (such as numbers and strings) onto the stack, calling functions
defined by the script, and setting variables in the state.</p> <p><a
href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>Tables</h3> <p>,Table" is the Lua term for
associative arrays, or ,maps.“ A table is just a collection of entries, which are pairs (key, value).</p>
<p>Tables are the sole data-structuring mechanism in Lua. Nowadays, maps are available in most
scripting languages, as well as in several non-scripting ones, but in Lua maps are ubiquitous. Indeed,
Lua programmers use tables not only for all kinds of data structures (such as records, arrays, lists,
sets, and sparse matrices) but also for higher-level constructs (such as modules, objects, and
environments).</p> <p>Programmers implement records using tables whose indices are strings
representing field names. Lua supports records with syntactic sugar, translating a field reference like

t.X

to a table-indexing operation

1.</p> <p>Lua offers constructors, expressions that create and initialize tables. The constructor
{}
creates an empty table. The constructor

{x=10,y=20}
creates a table with two entries, one mapping the string

nye

to the integer 10, the other mapping

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop

2025/10/16 06:56 5/22 A Look at the Design of Lua

.</p> <p>Programmers implement arrays with tables whose indices are positive integers.
Constructors also support this usage. For example, the expression

{10, 20, 30}

creates a table with three entries, mapping 1 to 10, 2 to 20, and 3 to 30. Programmers see the table
as an array with three elements.</p> <p>Arrays have no special status in the semantics of Lua; they
are just ordinary tables. However, arrays pervade programming. Therefore, implementation of tables
in Lua gives special attention to their use as arrays. The internal representation of a table in Lua has
tWO parts: an array and a hash.7 |f the
array part has size N, all entries with integer keys between 1 and N are
stored in the array part; all other entries are stored in the hash part. The keys in the array part are
implicit and do not need to be stored. The size N of the array part is computed
dynamically, every time the table has to rehash as the largest power of two such that at least half the
elements in the array part will be filled. A generic access (such as

t[i]

) first checks whether

is an integer in the range [1, N]; this is the most common case and the one
programmers expect to be fast. If so, the operation gets the value in the array; otherwise, it accesses
the hash. When accessing record fields (such as

t.X

) the Lua core knows the key is a string and so skips the array test, going directly to the hash.</p>
<p>An interesting property of this implementation is that it gives sparse arrays for free. For instance,
when a programmer creates a table with three entries at indices 5, 100, and 3421, Lua automatically
stores them in the hash part, instead of creating a large array with thousands of empty slots.</p>
<hr/><blockquote readability=,6“> <p>Lua offers exactly one general mechanism for each
major aspect of programming: tables for data; functions for abstraction; and coroutines for
control.</p> </blockquote> <hr/><p>Lua also uses tables to implement weak references. In
languages with garbage collection, a weak reference is a reference to an object that does not prevent
itS CO”eCtion as gar.bage.10 In Lua, Weak
references are implemented in weak tables. A weak table is thus a table that does not prevent its
contents from being collected. If a key or a value in an entry is collected, that entry is simply removed
from the table; we discuss later how to signal that a table is weak. Weak tables in Lua also subsume
ephemerons.‘a href=,.https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulItext#R4“>4</p> <p>Weak tables seem
to contradict the motto ,,mechanisms instead of policies” because weak reference is a more basic
concept than weak table. Weak tables would then be a policy, a particular way of using weak
references. However, given the role of tables in Lua, it is natural to use them to support weak
references without introducing yet another concept.</p> <p><a

href=, https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>Functions</h3> <p>Lua supports first-class
anonymous functions with lexical scoping, informally known as closures.**
href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R13“>13 Several non'functional |anguage5

nowadays (such as Go, Swift, Python, and JavaScript) offer first-class functions. However, to our

Qgelm - https://schnipsl.qgelm.de/

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R7
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R10
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R4
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R13

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

knowledge, none uses this mechanism as pervasively as Lua.</p> <p>All functions in Lua are
anonymous. This is not immediately clear in the standard syntax for defining a function</p>
<blockquote readability=,5“> <p>

function add (x, y)

return x + vy

end

</p> </blockquote> <p>Nevertheless, this syntax is just syntactic sugar for an assignment of an
anonymous function to a variable</p> <blockquote readability=,5"“> <p>

add = function (x, vy)

return x + vy

end

</p> </blockquote> <p>Most dynamic languages offer some kind of
eval
function that evaluates a piece of code produced at runtime. Instead of
eval

, Lua offers a

load

function that, given a piece of source code, returns a function equivalent to that code. We saw a
variant of

load
in the C APl in the form of
luaL loadfile.

Consider the following piece of code</p> <blockquote readability=,4"“> <p>

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

2025/10/16 06:56 7/22

A Look at the Design of Lua

local id = 0

function genid ()

id = id + 1

return id

end

</p> </blockquote> <p>When one loads it, the function

load

returns an anonymous function equivalent to the following code</p> <blockquote readability=,4“>

<p>
function ()

local id = 0

function genid ()

id = id + 1

return id

end

Qgelm - https://schnipsl.qgelm.de/

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

end

</p> </blockquote> <p>So, if a programmer loads Lua code stored in a string and then calls the
resulting function, the programmer gets the equivalent of

eval

.</p> <p>We use the term ,chunk” to denote a piece of code fed to

load

(such as a source file). Chunks are the compilation units of Lua. When a programmer uses Lua in
interactive mode, the Read-Eval-Print Loop (REPL) handles each input line as a separate chunk.</p>
<p>The function

load

simplifies the semantics of Lua in two ways: First, unlike

eval

load

is pure and total; it has no side effects and it always returns a value, either a function or an error
message; second, it eliminates the distinction between ,global” code and ,function” code, as in the
previous chunk of code. The variable

id

, Which in the original code appears outside any function, is seen by Lua as a local variable in the
enclosing anonymous function representing the script. Through lexical scoping,

id

is visible to the function

genid

and preserves its value between successive calls to that function. Thus,

id

works like a static variable in C or a class variable in Java.</p> <p><a

href=, https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>Exploring Tables and Functions</h3>

<p>Despite their apparent simplicity—o0r because of it—tables and functions form a
basis for several other mechanisms in Lua, including modules, object-oriented programming, and

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop

2025/10/16 06:56 9/22 A Look at the Design of Lua

exception handling. We now discuss some of them, emphasizing how they contribute to Lua's design
goals.</p> <p>Modules. The construction of modules in Lua is a nice example of
the use of first-class functions and tables as a basis for other mechanisms. At runtime, a module in
Lua is a regular table populated with functions, as well as possibly other values (such as constants).
Consider this Lua fragment</p> <blockquote readability=,4"> <p>

print(math.sin(math.pi/6)) --> 0.5

</p> </blockquote> <p>Abstractly, programmers read this code as calling the
sin

function from the standard math module, using the constant

pi

from that same module. Concretely, the language sees

math

as a variable (created when Lua loaded its standard libraries) containing a reference to a table. That
table has an entry with the key ,,

sin
“ containing the sine function and an entry ,,
pi

“ with the value of π.</p> <p>Statically, a module is simply the chunk that creates its
corresponding table. <a href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg"
onclick=,, window.open(this.href, ,

'resizable=yes, status=no, location=no,toolbar=no,menubar=no, fullscreen=no,scro
1lbars=no,dependent=no,width=493,height=473"'); return false;“>Figure 2
shows a standard idiom for defining a simple module in Lua. The code creates
a table in the local variable <code>M</code>, populates the table with some
functions, and returns that table. Recall that Lua loads any chunk as the
body of an enclosing anonymous function; this is how one should read that
code. The variable <code>M</code> is local to that enclosing function and the
final statement returns from that function.</p> <p><a
href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg"
onclick=,window.open(this.href, ,
'resizable=yes,status=no,location=no,toolbar=no,menubar=no,fullscreen=no,scrollbars=no,depende
nt=no,width=493,height=473'); return false;"><img alt=,f2.jpg" height=,398“
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg"
width=,415"/>
Figure 2. A simple module in Lua.</p> <p>0Once
defined in a file

mymodule. lua

Qgelm - https://schnipsl.qgelm.de/

http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

, @ programmer can use that module with code like this**

href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#FNA"“>a

</p> <blockquote readability=,5"> <p>

local vec = require "mymodule" print(vec.norm(vec.new(1l0, 10)))-->
14.142135623731

</p> </blockquote> <p>In it,
require

is a regular function from the standard library; when the single argument to a function is a literal
string, the code can omit the parentheses in the call. If the module is not already loaded,

require

searches for an appropriate source for the given name (such as by looking for files in a list of paths),
then loads and runs that code, and finally returns what the code returns. In this example,

require

returns the table

M
created by the chunk.</p> <p>Lua leverages tables, first-class functions, and

load
to support modules. The only addition to the language is the function

require.
This economy is particularly relevant for an embedded language like Lua. Because

require

is a regular function, it cannot create local variables in the caller's scope. Thus, in the example using
"mymodule"

, the programmer had to define explicitly the local variable

vec.
Yet this limitation gives programmers the ability to give a local name to the module.</p> <p>0n the

one hand, the construction of modules in Lua is not as elegant as a dedicated language mechanism

could be, with explicit import and export lists and other refinements, as in the ,import machinery” in
Python.12 On the Other hand, thls

construction has a clear semantics that requires no further explanation. It also has an inexpensive

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#FNA
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R12

2025/10/16 06:56 11/22 A Look at the Design of Lua

implementation. Finally, and also quite important, it has an easy integration with the C API: One can
easily create modules in C; create mixed modules with some functions defined in Lua and others in C;
and for C code call functions inside modules. The API needs no additional mechanisms to do these
tasks; all it needs is the existing Lua mechanisms to manipulate tables and functions.</p>
<p>Environments. Local variables in Lua follow a strict lexical scoping discipline.
A local variable can be accessed only by code that is lexically written inside its scope. Lexical scoping
implies that local variables are one of the few constructions that do not cross the C API, as C code
cannot be lexically inside Lua code.</p> <p>A program in Lua can be composed of multiple chunks
(such as multiple modules) loaded independently. Lexical scoping implies that a module cannot
create local variables for other chunks. Variables like

math

and

require

, Created by the standard libraries, should thus be created as global variables. However, using global
variables in a large program can easily lead to overly complex code, entangling apparently unrelated
parts of a program. To circumvent this conflict, Lua does not have global variables built into the
language. Instead, it offers a mechanism of environments that, by default, gives the equivalent of
global variables. Nevertheless, as we show later in this article, environments allow other
possibilities.</p> <p>Recall that any chunk of code in Lua is compiled as if inside an anonymous
function. Environments add two simple rules to this translation: First, the enclosing anonymous
function is compiled as if in the scope of a local variable named _

ENV
; and second, any free variable

id

in the chunk is translated to _

ENV.1id

. For example, Lua loads the chunk

print(v)
as if it was written like this</p> <blockquote readability=,4"> <p>

local ENV = <≪some given value>>

return function ()

Qgelm - https://schnipsl.qgelm.de/

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

_ ENV.print(_ ENV.v)

end

</p> </blockquote> <p>By default,
load

initializes _

ENV

with a fixed table, called the global environment. All chunks thus share this same environment by
default, giving the illusion of global variables; in the chunk just mentioned, both

v
and

print

refer to fields in that table and thus behave as global variables. However, both

load

and the code being loaded can modify _

ENV

to any other value. The _

ENV

mechanism allows different scripts to have different environments, functions to be called with
different environments, and other variations.</p> <p>The translation of free variables needs
semantic information to determine whether a variable is free. Nevertheless, the translation itself is
purely syntactical. In particular, _

ENV

is a regular variable, needing no special treatment by the compiler. The programmer can assign new
values to

ENV

or declare other variables with that name. As an example, consider this fragment</p> <blockquote
readability=,4"> <p>

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

2025/10/16 06:56 13/22 A Look at the Design of Lua

do

 8
local ENV = {}

end

</p> </blockquote> <p=>Inside the

do

block, all free variables refer to fields in the new table _
ENV

. Outside the block, all free variables refer to the default environment.</p> <p>A more typical use of

ENV

is for writing modules. <a href=, http://deliveryimages.acm.org/10.1145/3190000/3186277/f3.jpg"
onclick=,window.open(this.href, ,

'resizable=yes,status=no, location=no,toolbar=no,menubar=no, fullscreen=no,scro
Llbars=no,dependent=no,width=493,height=477"'); return false;"“>Figure 3
shows how to rewrite the simple module of <a
href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg"
onclick=,window.open(this.href, ,
'resizable=yes,status=no,location=no,toolbar=no,menubar=no,fullscreen=no,scrollbars=no,depende
nt=no,width=493,height=473"); return false;"“>Figure 2 using environments. In the first line,
where the code ,imports” a function from the

math

module, the environment is still the default one. In the second line, the code sets the environment to
a new table that will represent the module. The code then defines the module components directly as
free variables; instead of

M.norm

, it uses only

norm

Qgelm - https://schnipsl.qgelm.de/

http://deliveryimages.acm.org/10.1145/3190000/3186277/f3.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f2.jpg

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

, which Lua translates to _
ENV.norm

. The code ends the module with
return _ ENV.

</p> <p><a href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f3.jpg"

onclick=,, window.open(this.href, ,

'resizable=yes, status=no, location=no,toolbar=no,menubar=no, fullscreen=no,scro
Llbars=no,dependent=no,width=493,height=477"); return false;"“><img
alt=,f3.jpg" height=,402“
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f3.jpg"
width=,415"/>
Figure 3. A module in Lua using
environments.</p> <p>This method for writing modules has two
benefits: First, all external functions and modules must be explicitly
imported right at the start; and second, a module cannot pollute the global
space by mistake.</p> <p>0bject-oriented programming.
Support for object-oriented programming in Lua follows the pattern we have
been seeing in this article: It tries to build upon tables and functions,
adding only the minimum necessary to the language.</p> <p>Lua uses a two-tier
approach to object-oriented programming. The first is implemented by Lua and
the second by programmers on top of the first one. The first tier is class-
based. Both objects and classes are tables, and the relation ,instance of* is
dynamic. Userdata, which represents C values in Lua, can also play the role
of objects. Classes are called metatables. In this first tier, a class can
define only methods for the standard operators (such as addition,
subtraction, and concatenation). These methods are called metamethods.</p>
<p><a href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f4.jpg"
onclick=,window.open(this.href, ,
'resizable=yes,status=no,location=no,toolbar=no,menubar=no,fullscreen=no,scrollbars=no,depende
nt=no,width=1022,height=528"); return false;“>Figure 4 illustrates how a programmer would
use this basic mechanism to perform arithmetic on 2D vectors. The code starts with a table

mt
that would be the metatable for the vectors. The code then defines a function
newVector

to create 2D vectors. Vectors are tables with two fields,

and

y

. The standard function

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

http://deliveryimages.acm.org/10.1145/3190000/3186277/f3.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f3.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f4.jpg

2025/10/16 06:56 15/22 A Look at the Design of Lua

setmetatable

establishes the ,instance of” relation between a new vector and
mt

. Next, the code defines the metamethod

mt. add

to implement the addition operator for vectors. The code then creates two vectors,
A

and

, and adds them to create a new vector

. When Lua tries to evaluate
A+B

, it does not know how to add tables and so checks for an _<code>add</code> entry in
<code>A</code>'s metatable. Given that it finds that entry, Lua calls the function stored
there—the metamethod—passing the original operands <code>A</code> and
<code>B</code> as arguments.</p> <p><a
href=,,http://deliveryimages.acm.org/10.1145/3190000/3186277/f4.jpg"
onclick=,window.open(this.href, ,

'resizable=yes,status=no, location=no,toolbar=no,menubar=no, fullscreen=no, scro
llbars=no,dependent=no,width=1022,height=528"'); return false;“><img
alt=,f4.jpg"” height=,214"
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f4.jpg"
width=,415"/>
Figure 4. An example of
metatables.</p> <p>The metamethod for the indexing operator
<code>[]</code> offers a form of delegation in Lua. lLua calls this
metamethod, named _<code>index</code>, whenever it tries to retrieve the
value of an absent key from a table. (For userdata, Lua calls that metamethod
for all keys.) For the indexing operation, Lua allows the metamethod to be a
function or a table. When <code>index</code> is a table, Lua delegates to
that table all access for an index that is absent in the original table, as
illustrated by this code fragment</p> <blockquote readability=,8">
<p><code>Proto = {x = 0, y = 0}</code>
<code>0obj = {x =
10}</code>
<code>mt = { index = Proto}</code>
<code>setmetatable(obj,
mt)</code>
<code>print(obj.x) –>
10</code>
<code>print(obj.y) –> 0</code></p> </blockquote> <p>In
the second call to <code>print</code>, Lua cannot find the key

Qgelm - https://schnipsl.qgelm.de/

http://deliveryimages.acm.org/10.1145/3190000/3186277/f4.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f4.jpg

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

<code>,y“</code> in <code>obj</code> and so delegates the access to

<code>Proto</code>. In the first <code>print</code>, as <code>obj</code> has
a field <code>,x"“</code>, the access is not delegated.</p> <p>With tables,
functions, and delegation, we have almost all we need for the second tier,
which is based on prototypes. In it, programmers represent objects also by

tables or userdata. Each object can have a prototype, from which it inherits
methods and fields. The prototype of an object <code>obj</code> is the object

stored in the <code>index</code> field of the metatable of <code>obj</code>.
One can then write <code>obj.foo(x)</code>, and Lua will retrieve the method
<code>foo</code> from the object's prototype, through delegation.</p>
<p>However, if we stopped here, there would be a flaw in the support for
object-oriented programming in Lua. After finding and calling the method in
the object's prototype, there would be no way for the method to access the
original object, which is the intended receiver. Lua solves this problem
through syntactic sugar. Lua translates a ,method” definition like</p>
<blockquote readability=,4"> <p><code>function Proto:foo

(x)</code>
 <code>..</code>
<code>end</code></p
> </blockquote> <p>to a function definition:</p> <blockquote readability=,5">

<p><code>function Proto.foo (self,
x)</code>
 8#160; <code>..</code>
<code>end</code></p>
</blockquote> <p>Likewise, Lua translates a ,method” call
<code>obj:foo(x)</code> to <code>obj.foo(obj,x)</code>. When the programmer
defines a ,method“—a function using the colon syntax—lLua adds a
hidden parameter <code>self</code>. When the programmer calls a ,method”
using the colon syntax, lLua provides the receiver as the argument to the
<code>self</code> parameter. There is no need to add classes, objects, or
methods to the language, merely syntactic sugar.</p> <p><a

href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg"
onclick=,window.open(this.href, ,

'resizable=yes,status=no,location=no,toolbar=no,menubar=no.fullscreen=no,scrollbars=no,depende

nt=no,width=1021,height=561'); return false;“>Figure 5 illustrates these concepts. First the
code creates a prototype, the table <code>Account</code>. The code then creates a table
<code>mt</code> to be used as the metatable for instances of <code>Account</code>. It then

adds three methods to the prototype: one for creating instances, one for making deposits, and one for

retrieving the account's balance. Finally, it returns the prototype as the result of this module.</p>
<p><a href=,,http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg"

onclick=,window.open(this.href,
'resizable=yes,status=no, 1ocat10n no, toolbar no,menubar=no, fullscreen=no,scro

alt= ..f5 jpg” height=,228“
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg"

width=,415"/>
Fiqgure 5. A simple prototype-based design in

Lua.</p> <p>Assuming the module is in the file

<code>Account. lua</code>, the following lines exercise the code</p>
<blockquote readability=,4"“> <p><code>Account = require
<Account“</code>
<code>acc =
Account:new()</code>
<code>acc:deposit(1000)</code>
<code>print(acc:b
alance()) —></code>
<code>1000</code></p> </blockquote> <p>First, the
code requires the module, then it creates an account; <code>acc</code> will
be an empty table with mt as its metatable. De-sugared, the next line reads

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg

2025/10/16 06:56 17/22 A Look at the Design of Lua

as <code>acc.deposit(acc,1000)</code>. The table <code>acc</code> does not
have a <code>deposit</code> field, so Lua delegates that access to the table
in the metatable's <code>index</code> field. The result of the access is the
function <code>Account.deposit</code>. lLua then calls that function, passing
<code>acc</code> as the first argument (<code>self</code>) and 1000 as the
second argument (<code>amount</code>). Inside the function, Lua will again
delegate the access <code>self.bal</code> to the prototype because
<code>acc</code> does not yet have a field <code>bal</code>. In subsequent
calls to balance, lLua will find a field <code>bal</code> in the table
<code>acc</code> and use that value. Distinct accounts thus have separate
balances but share all methods.</p> <p>The access to a prototype in the
metatable's <code>index</code> is a reqular access, meaning prototypes can

be chained. As an example, suppose the programmer adds the following lines to

the previous example</p> <blockquote readability=,5“> <p><code>0bject = {name
= ,Nno
name‘}</code>
<code>setmetatable(Account,</code>
 &#
160;<code>{ _ index = Object})</code></p> </blockquote> <p>When Lua

evaluates <code>acc.name</code>, the table <code>acc</code> does not have a
<code>name</code> key, so Lua tries the access in its prototype,
<code>Account</code>. That table also does not have that key, so lLua goes to
<code>Account's</code> prototype, the table <code>0Object</code>, where it
finally finds a <code>name</code> field.</p> <p>The programmer can keep the
balances private by storing them outside the object <code>table</code>, as
shown in <a
href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f6.jpg"
onclick=,window.open(this.href, ,
'resizable=yes,status=no,location=no,toolbar=no,menubar=no.fullscreen=no,scrollbars=no,depende
nt=no,width=493,height=697"); return false;“>Figure 6. The key difference between this version
and the one in <a href=,,http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg"

onclick=,window.open(this.href, ,

'resizable=yes,status=no, location=no, toolbar=no,menubar=no, fullscreen=no,scro
llbars=no,dependent=no,width=1021,height=561"'); return false;“>Fiqure 5

is the use of <code>bal[self]</code> instead of <code>self.bal</code> to
denote the balance of an account. The table <code>bal</code> is what we call
a dual table. The call to <code>setmetatable</code> in the second line causes

this table to have weak keys, thus allowing an account to be collected when
there are no other references to it in the program. The fact that

<code>bal</code> is local to the module ensures no code outside that module
can see or tamper with an account's balance, a technique that is handy
whenever one needs a private field in a structure.</p> <p><a

href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f6.jpg"
onclick=,window.open(this.href, ,

'resizable=yes,status=no,location=no,toolbar=no,menubar=no.fullscreen=no,scrollbars=no,depende

nt=no,width=493,height=697'); return false;“><imgqg alt=,f6.jpg" height=,587"
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f6.jpg"
width=,415"/>
Figure 6. Accounts with private fields.</p> <p>An

evaluation of Lua's support for object-oriented programming is not very different from the evaluation

of the other mechanisms we have discussed so far. On the one hand, object-oriented features in Lua
are not as easy to use as in other languages that offer specific constructs for the task. In particular,

the colon syntax can be somewhat confusing, mainly for programmers who are new to Lua but have
some experience with another object-oriented language. Lua needs that syntax because of its

Qgelm - https://schnipsl.qgelm.de/

http://deliveryimages.acm.org/10.1145/3190000/3186277/f6.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f5.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f6.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f6.jpg

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

economy of concepts that avoids introducing the concept of method when the existing concept of
function will suffice.</p> <p>0n the other hand, the semantics of objects in Lua is simple and clear.

Also, the implementation of objects in Lua is flexible. Because method selection and the variable
<code>self</code> are independent, Lua does not need additional mechanisms to call methods from
other classes (such as ,super”). Finally, this design is friendly to the C API. All it needs is basic

manipulation of tables and functions, plus the standard function <code>setmetatable</code>. Lua
programmers can implement prototypes in Lua and create userdata instances in C, create prototypes

in C and instances in Lua, and define prototypes with some methods implemented in Lua and others
in C. All these pieces work together seamlessly.</p> <p>Exception handling.

Exception handling in Lua is another mechanism that relies on the flexibility of functions. Several
languages offer a <code>try-catch</code> construction for exception handling; any exception in the
code inside a <code>try</code> clause jumps to a corresponding <code>catch</code> clause. Lua
does not offer such a construction, mainly because of the C APl.</p> <p>More often than not,
exceptions in a script are handled by the host application. A syntactic construction like <code>try-
catch</code> is not easily mapped into an APl with a foreign language. Instead, the C API packs
exception-handling functionality into the higher-order function <code>lua _ pcall</code> (,protected

call”) we discussed when we visited the C API earlier in this article. The function <code>pcall</code>

receives a function as an argument and calls that function. If the provided function terminates without
errors, <code>pcall</code> returns true; otherwise, <code>pcall</code> catches the error and

returns false plus an error object, which is any value given when the error was raised. Regardless of
how <code>pcall</code> is implemented, it is exposed in the C APl as a conventional function. The C
API also offers a function to raise errors, called <code>lua _error</code>, whose only argument is
the error object. The function error also appears in the C API as a regular function despite the fact that
it never returns.</p> <p>Both <code>|ua _pcall</code> and <code>lua _ error</code> are
reflected into Lua via the standard library. In languages that support <code>try-catch</code>,
typical exception-handling code looks like this</p> <blockquote readability=,4"> <p><code>try
{</code>
 <code><<protected

code>> </code>
<code>}</code>
<code>catch (errobj)
{</code>
 <code><<exception

handling>: >:</code>
<code>} </code></p> </blockguote> <p>The equivalent code in
Lua is like this</p> <blockquote readability=,5"“> <p><code>local ok, errobj = pcall(function
()</code>
 <code><<protected

code>> </code>
<code>end)</code>
<code>if not ok

then</code>
 <code><<exception

handling> > </code>
<code>end</code></p> </blockquote> <p>In this translation,
anonymous functions with proper lexical scoping play a central role. Except for statements that
invoke escape continuations (such as <code>break</code> and <code>return</code>), everything
else can be written inside the protected code as if written in the regular code.</p> <p>The use of

<code>pcall</code> for exception handling has pros and cons similar to those for modules. On the

one hand, the code may not look as elegant as in other languages that support the traditional
<code>try.</code> On the other hand, it has a clear semantics. In particular, questions like ,What

happens with exceptions inside the catch clause?” have an obvious answer. Moreover, it has a clear
and easy integration with the C API; it is exposed through conventional functions; and Lua programs
can raise errors in Lua and catch them in C and raise errors in C and catch them in Lua.</p> <p><a
href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>Coroutines</h3> <p>Like associative arrays and
first-class functions, coroutines are a well-established concept in programming. However, unlike
tables and first-class functions, there are significant variations in how different communities
implement coroutines.2 Several Of these
variations are not equivalent, in the sense that a programmer cannot implement one on top of the

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R2

2025/10/16 06:56 19/22 A Look at the Design of Lua

other.</p> <p>Coroutines in Lua are like cooperative multithreading and have the following

distinguishing properties:</p> <p>First-class values. Lua programmers can create

coroutines anywhere, store them in variables, pass them as parameters, and return them as results.
More important, they can resume coroutines anywhere;</p> <p>Suspend execution.

They can suspend their execution from within nested functions. Each coroutine has its own call stack,
with a semantics similar to collaborative multithreading. The entire stack is preserved when the
coroutine yields;</p> <p>Asymmetric. Symmetric coroutines offer a single control-

transfer operation that transfers control from the running coroutine to another given coroutine.

Asymmetric coroutines, on the other hand, offer two control-transfer operations,
<code>resume</code> and <code>yield</code>, that work like a call-return pair; and</p>

<p>Equivalent to one-shot continuations.**
href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R2“>2

 Despite this equivalence, coroutines
offer one-shot continuations in a format that is more natural for a procedural language due to its
similarity to multithreading.</p> <p><a
href=,,http://deliveryimages.acm.org/10.1145/3190000/3186277/f7.jpg*
onclick=,window.open(this.href, ,

'resizable=yes,status=no,location=no, toolbar=no,menubar=no, fullscreen=no,scro
llbars=no,dependent=no,width=1022,height=351"'); return false;“>Fiqure 7
illustrates the life cycle of a coroutine in Lua. The program prints 10, 20,
30, and 40, in that order. It starts by creating a coroutine <code>co</code>,
giving an anonymous function as its body. That operation returns only a
handle to the new coroutine, without running it. The program then resumes the
coroutine for the first time, starting the execution of its body. The
parameter <code>x</code> receives the argument given to <code>resume</code>,
and the program prints 10. The coroutine then yields, causing the call to
<code>resume</code> to return the value 20, the argument given to
<code>yield</code>. The program then resumes the coroutine again, making
<code>yield</code> return 30, the value given to <code>resume.</code> The
coroutine then prints 30 and finishes, causing the corresponding call to
<code>resume</code> to return 40, the value returned by the coroutine.</p>
<p><a href=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f7.jpg”

onclick=,window.open(this.href, ,

'resizable=yes,status=no,location=no,toolbar=no,menubar=no.fullscreen=no,scrollbars=no,depende

nt=no,width=1022,height=351"); return false;“><img alt=,f7.jpg” height=,143"
src=,http://deliveryimages.acm.org/10.1145/3190000/3186277/f7.jpg"

width=,415"/>
Figure 7. A simple example of a coroutine in Lua.</p>
<p>Coroutines are not as widely used in Lua as tables and functions. Nevertheless, when required,

coroutines play a pivotal role, due to their capacity for turning the control flow of a program inside
out.</p> <p>An important use of coroutines in Lua is for implementing cooperative multithreading.

Games typically exploit this feature, because they need to be in control to remain responsive at
interactive rates. Each character or object in a game has its own script running in a separate

coroutine. Each script is typically a loop that, at each iteration, updates the character's state and then
yields. A simple scheduler resumes all live coroutines at each game update.</p> <hr/><blockquote

readability=,8"> <p><em=>In the case of modules, tables provide name spaces, lexical scoping
provides encapsulation, and first-class functions allow exportation of functions.</p>
</blockquote> <hr/><p>Another use of coroutines is in tackling the ,,who-is-the-boss" problem. A
typical issue with scripting languages is the decision whether to embed or to extend. When
programmers embed a scripting language, the host is the boss, that is, the host program, written in
the foreign language, has the main loop of the program and calls functions written in the scripting

language for particular tasks. When programmers extend a scripting language, the script is the boss;
programmers then write libraries for it in the foreign language, and the main loop of the program is in

Qgelm - https://schnipsl.qgelm.de/

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R2
http://deliveryimages.acm.org/10.1145/3190000/3186277/f7.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f7.jpg
http://deliveryimages.acm.org/10.1145/3190000/3186277/f7.jpg

Last update: 2021/12/06

1524 wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

the script.</p> <p>Embedding and extending both have advantages and disadvantages, and the
Lua-C API supports them equally. However, external code can be less forgiving. Suppose a large,

monolithic application contains some useful functionality for a particular script. The programmer
wants to write the script as the boss, calling functions from that external application. However, the

application itself assumes it is the boss. Moreover, it may be difficult to break the

application into individual functions and offer them as a coherent library to the script.</p>
<p>Coroutines offer a simpler design. The programmer modifies the application to create a coroutine

with the script when it starts; every time the application needs an input, it resumes that coroutine.
That is the only change the programmer needs to make in the application. The script, for its part, also

looks like a reqular program, except it yields when it needs to send a command to the application.
The control flow of the resulting program progresses as follows: The application starts, creates the

coroutine, does its own initialization, and then waits for input by resuming the coroutine. The
coroutine then starts running, does its own initialization, and performs its duties until it needs some

service from the application. At this point, the script yields with a request, the call to
<code>resume</code> made by the application returns, and the application services the given

request. The application then waits for the next request by resuming the script again.</p>

<p>Presentation of coroutines in the C API is clearly more challenging than presentation of functions

and tables. C code can create and resume coroutines without restrictions. In particular, resuming
works like a reqgular function call: It (re) activates the given coroutine when called and returns when

the coroutine yields or ends. However, yielding also poses a problem. Once a C function vields, there
is no way to later return the control to that point in the function. The API offers two ways to
circumvent this restriction: The first is to vield in a tail position: When the coroutine resumes, it goes

straight to the calling Lua function. The second is to provide a continuation function when yielding. In

this way, when the coroutine resumes, the control goes to the continuation function, which can finish
the task of the original function.</p> <p>We can see again in the API the advantages of asymmetric

coroutines for a language like Lua. With symmetric coroutines, all transfers would have the problems
that asymmetric coroutines have only when yielding. In our experience, resumes from C are much
more common than yields.</p> <p><a
href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <h3>Conclusion</h3> <p>Every design involves
balancing conflicting goals. To address the conflicts, designers need to prioritize their goals. This is
clearly true of the design of any programming language.</p> <p>Lua has a unique set of design
goals that prioritize simplicity, portability, and embedding. The Lua core is based on three well-known,

proven concepts—associative arrays, first-class functions, and coroutines—all
implemented with no artificial restrictions. On top of these components, Lua follows the motto

.mechanisms instead of policies,” meaning Lua's design aims to offer basic mechanisms to allow
programmers to implement more complex features. For instance, in the case of modules, tables

provide name spaces, lexical scoping provides encapsulation, and first-class functions allow

exportation of functions. On top of that, Lua adds only the function <code>require</code> to search
for and <code>load</code> modules.</p> <p>Modularity in language design is nothing new."*

href=,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R11“>11 For inSta nce |t can be Used tO Cla rifV the
1

construction of a large application.

However, Lua uses modularity to keep its size small, breaking down complex constructions into
existing mechanisms.</p> <p>The motto ,mechanisms instead of policies” also makes for a flexible

language, sometimes too flexible. For instance, the do-it-yourself approach to classes and objects
leads to proliferation of different, often incompatible, systems, but is handy when a programmer

needs to adapt Lua to the class model of the host program.</p> <p>Tables, functions, and

coroutines as used in Lua have shown great flexibility over the years. Despite the language's
continuing evolution, there has been little demand from programmers to change the basic

mechanisms.</p> <p>The lack of built-in complex constructions and minimalist standard libraries

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R11
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#R1

2025/10/16 06:56 21/22 A Look at the Design of Lua

(for portability and small size) make Lua a language that is not as good as other scripting languages
for writing ,,quick-and-dirty” programs. Many programs in Lua need an initial phase for programmers
to set up the language, as a minimal infrastructure for object-oriented programming. More often than

not, Lua is embedded in a host application. Embedding demands planning and the set-up of the
language is typically integrated with its embedding. Lua's economy of concepts demands from

programmers a deeper understanding of what they are doing, as most constructions are explicit in
the code. This explicitness also allows such deeper understanding. We trust this is a blessing, not a
curse.</p> <p><img alt=,ufl.jpg"
src=,,http://deliveryimages.acm.org/10.1145/3190000/3186277/ufl.jpg"/>
Figure.
Watch the authors discuss this work in the exclusive Communications video. https://cacm.acm.org/videos/a-look-a
t-the-design-of-lua</p> <p><a
href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop”“>Back to Top</p> <div id= article-references” readability=,143">
<h3>References</h3> <p>1. Cazzola, W. and Olivares, D.M. Gradually learning programming
supported by a growable programming language. <em=>I|EEE Transactions on Emerging Topics in
Computing 4, 3 (July 2016), 404–:;415.</p> <p>2. de Moura, A.L and lerusalimschy, R.
Revisiting coroutines. ACM Transactions on Programming Languages and Systems 31, 2
(Feb. 2009), 6.1–6.31.</p> <p>3. Gamasutra. Game Developer magazine's
2011 Front Line Award, Jan. 13, 2012; https://www.gamasutra.com/view/news/129
084/</p> <p>4. Hayes, B. Ephemerons: A new finalization mechanism. In Proceedings of
the 12" ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Atlanta, GA, Oct. 5–9). ACM, New York, 1997, 176–183.</p>

<p>5. lerusalimschy, R. Programming with multiple paradigms in Lua. In Proceedings of the
18™ International Workshop on Functional and (Constraint) Logic Programming, LNCS, Volume

5979. S. Escobar Ed. (Brasilia, Brazil, June 28). Springer, Heidelberg, Germany, 2009

5–13.</p> <p>6. lerusalimschy, R., de Figueiredo, L.H., and Celes, W. Lua—An

extensible extension language. Software: Practice and Experience 26, 6 (June 1996),
635–:652.</p> <p>7. lerusalimschy, R., de Figueiredo, L.H., and Celes, W. The evolution of

Lua. In Proceedings of the Third ACM SIGPLAN Conference on History of Programming
Languages (San Diego, CA, June 9–10). ACM Press, New York, 2007,

2.18–:2.26.</p> <p>8. lerusalimschy, R., de Figueiredo, L.H., and Celes, W. Passing a language

through the eye of a needle. Commun. ACM 54, 7 (July 2011), 38–:43.</p>
<p>9. International Organization for Standardization. ISO 2000. International Standard:
Programming Languages, C. ISO/IEC9899: 1999(E).</p> <p>10. Jones, R., Hosking, A., and

Moss, E. The Garbage Collection Handbook. CRC Press, Boca Raton, FL, 2011.</p>

<p>11. Kats, L. and Visser, E. The Spoofax Language Workbench: Rules for declarative specification
of lanquages and IDEs. In Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications (Reno/Tahoe, NV, Oct. 17–:21). ACM
Press, New York, 2010, 444&+#8211;463.</p> <p>12. The Python Software Foundation. The

Python Language Reference, 3.5 Edition. The Python Software Foundation, 2015.</p> <p>13.
Sestoft, P. Programming Language Concepts, Second Edition. Springer, Cham,
Switzerland, 2017.</p> <p>14. Wikipedia. List of applications using Lua; <a
href=,,https://en.wikipedia.org/w/index.php?title=List_of applications using Lua&oldid=7954216
53“>https://en.wikipedia.org/w/index.php?title=List of applications_using Lua&oldid=79542165
3</p> </div> <p><a
href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop”“>Back to Top</p> <div id= article-authorinfo” readability=,18">
<h3>Authors</h3> <p>Roberto lerusalimschy (<a
href=,http://delivery.acm.org/10.1145/3190000/3186277/mailto:roberto@inf.puc-

Qgelm - https://schnipsl.qgelm.de/

http://deliveryimages.acm.org/10.1145/3190000/3186277/uf1.jpg
https://cacm.acm.org/videos/a-look-at-the-design-of-lua
https://cacm.acm.org/videos/a-look-at-the-design-of-lua
https://cacm.acm.org/videos/a-look-at-the-design-of-lua
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://www.gamasutra.com/view/news/129084/
https://www.gamasutra.com/view/news/129084/
https://www.gamasutra.com/view/news/129084/
https://en.wikipedia.org/w/index.php?title=List_of_applications_using_Lua&oldid=795421653
https://en.wikipedia.org/w/index.php?title=List_of_applications_using_Lua&oldid=795421653
https://en.wikipedia.org/w/index.php?title=List_of_applications_using_Lua&oldid=795421653
https://en.wikipedia.org/w/index.php?title=List_of_applications_using_Lua&oldid=795421653
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
http://delivery.acm.org/10.1145/3190000/3186277/mailto:roberto@inf.puc-rio.br

Last update: 2021/12/06
15:24

rio.br“>) is an associate professor of computer science at PUC-Rio, the

Pontifical Catholic University of Rio de Janeiro, Brazil.</p> <p>Luiz Henrigue de
Figueiredo ([email protecte
dl) is a researcher at IMPA, the Institute for Pure and Applied Mathematics in Rio de Janeiro,

Brazil.</p> <p>Waldemar Celes (<a
href=,http://delivery.acm.org/10.1145/3190000/3186277/mailto:celes@inf.puc-

rio.br”>) is an associate professor of computer science at PUC-Rio, the
Pontifical Catholic University of Rio de Janeiro, Brazil.</p> </div> <p><a
href=,,https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-
lua/fulltext#PageTop“>Back to Top</p> <div id= article-footnotes” readability=,36">
<h3>Footnotes</h3> <p>a. To test these pieces of code interactively, remove the
<code>local</code> from the variable initializations. In interactive mode, Lua loads each line as an

independent chunk. A local variable is thus visible only in the line where it was defined.</p> </div>
<div id=,article-permission” readability=,32“> <hr/> <p>Copyright held by the authors. Publication
rights licensed to ACM.
Request permission to publish from [email
0;protected]</p> </div> <p>The Digital Library is published by the Association for Computing
Machinery. Copyright ©: 2018 ACM, Inc.</p> <hr class=,thick"/> <p
class=,view-all“>No entries found</p> </html>

wallabag:a-look-at-the-design-of-lua https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

From:
https://schnipsl.qgelm.de/ - Qqgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/ Printed on 2025/10/16 06:56

http://delivery.acm.org/10.1145/3190000/3186277/mailto:roberto@inf.puc-rio.br
http://delivery.acm.org/10.1145/3190000/3186277/mailto:lhf@impa.br
http://delivery.acm.org/10.1145/3190000/3186277/mailto:celes@inf.puc-rio.br
http://delivery.acm.org/10.1145/3190000/3186277/mailto:celes@inf.puc-rio.br
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext#PageTop
http://delivery.acm.org/10.1145/3190000/3186277/mailto:permissions@acm.org
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:a-look-at-the-design-of-lua

	[A Look at the Design of Lua]
	A Look at the Design of Lua

