2025/07/11 13:29 1/7 A simple introduction to Python’s asyncio - Hacker Noon

A simple introduction to Python’s asyncio - Hacker Noon

Originalartikel
Backup

<html> <figure name=,6d7c" id=,6d7c" class=, graf graf-figure graf-leading“><div

class=, aspectRatioPlaceholder is-locked c3“> <img class=,graf-image” data-image-

id=, 1*R4HzblupFOU1sgfCqHISUg.png“ data-width=,1280" data-height=,589" data-action=,zoom"
data-action-value=, 1*R4HzblupFOU1sgfCqH9SUg.png“
src=,https://cdn-images-1.medium.com/max/1600/1*R4HzblupFOU1lsgfCqH9SUg.png"“/></div>
</figure> <blockquote name=,,c8f5" id=,c8f5" class=, graf graf-pullquote graf-after-h3“
readability=,4“> <p>This is a no-buzzword first principles introduction to the asyncio library
in Python.</p> </blockquote> <p name=,9d6b" id=,9d6b" class=,graf graf-p graf-
after-pullquote“>If you’ve come here, it is likely that you have heard of words such as
asynchronous, concurrency and parallelism. Before we start off with asyncio, lets quickly get some
basic things about these words right (via examples), so that we have a solid foundation to build this
upon.</p> <p name=,1083" id=,1083" class=, graf graf-p graf-after-p“><strong

class=, markup-strong markup-p-strong“>Concurrency is like having two threads running
on a single core CPU. Instructions from each thread could be interleaved, but at any given time, only
one of the two threads is actively making progress.</p> <p name=,b452" id=,b452" class=,graf
graf-p graf-after-p“><strong class=,markup-strong markup-p-strong“>Parallelism is like
having two threads running simultaneously on different cores of a multi-core CPU.</p> <blockquote
name=,8ce6" id=,8ce6" class=,graf graf-blockquote graf-after-p“ readability=,4“> <p>ltis
important to note that parallelism implies concurrency but not the other way round.</p>
</blockquote> <p name=, dfae” id=,dfae" class=,graf graf-p graf-after-blockquote”><strong
class=, markup-strong markup-p-strong“>Asynchronous is a higher level programming
concept, where you fire off some task, and decide that while you don’t have the result of that
task, you are better off doing some other work instead of waiting.</p> <blockquote name=,1825"
id=,1825" class=, graf graf-blockquote graf-after-p“ readability=,7“> <p>When you do things
asynchronously, you are, by definition implying concurrency between those things.</p>
</blockquote> <h4 name=,6e25" id=,6e25" class=, graf graf-h4 graf-after-blockquote“>Why
asynchronous programming?</h4> <p name=,db7a" id=,db7a" class=,graf graf-p graf-
after-h4“>Why do we want to write asynchronous programs you
say — because it could increase the performance of your program many many
times. Imagine you have a single core machine you are running your app on. You receive a request,
and you need to make two database queries to fulfil that request. Each query takes 50ms of time.
With a synchronous program, you would make the second request only after completing the
first — total time 100ms. With an asynchronous program, you could fire off
both the queries one after the other — total time 50ms.</p> <h3
name=,1363" id=,1363" class=,graf graf-h3 graf-after-p“>asyncio</h3> <p name=,3b23"
id=,3b23" class=,graf graf-p graf-after-h3“>Asyncio is all about writing asynchronous programs in
Python. Asyncio is a beautiful symphony between an <strong class=, markup-strong markup-p-
strong“>Event loop, <strong class=, markup-strong markup-p-strong“>Tasks
and <strong class=, markup-strong markup-p-strong“>Coroutines all coming together so
perfectly —&+#8202;its going to make you cry.</p> <h4 name=,3546" id=,3546"
class=,graf graf-h4 graf-after-p“>The Event Loop</h4> <p name=,0108" id=,0108*
class=,graf graf-p graf-after-h4“>This is what makes it all possible — a
simple loop, thats it. Well not <em class=, markup-em markup-p-em*“>that simple. But here is
how it works. The event loop is the orchestrator of the symphony. It runs <em class=, markup-em

Qgelm - https://schnipsl.qgelm.de/

https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c?gi=94caebb4fee1
https://www.qgelm.de/wb2html/wb394.html
https://cdn-images-1.medium.com/max/1600/1

Last
update:
2021/12/06
15:24

wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon https://schnipsl.qgelm.de/doku.php?id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon

markup-p-em*“>tasks one after the other. At any given time, only one of the tasks is
running.</p> <p name=,2f82" id=,2f82" class=, graf graf-p graf-after-p“>As you can imagine,
there is a lot of pressure on the active task, since other tasks are waiting for their turn. So, when the
active task makes a blocking call, say a network request, and cannot make further progress it gives
the control back to the event loop realising that some other task could possibly better utilise the
event loop’s time. It also tells the event loop what exactly it is blocked upon, so that when the
network response comes, the event loop can consider giving it time to run again.</p> <blockquote
name=,656f" id=,656f" class=,graf graf-blockquote graf-after-p“ readability=,8“> <p>The event
loop time is precious. If you are not making progress, you should step off the loop, so that someone
else can. Event loop is the measure of progress.</p> </blockquote> <h4 name=,blle" id=,blle"
class=,graf graf-h4 graf-after-blockquote“>The Coroutine & Task</h4> <p
name=,e086" id=,e086" class=,graf graf-p graf-after-h4“>Coroutines (co-operative routines) are a
key element of the symphony. It is the coroutines, and their co-operative nature, that enables giving
up control of the event loop, when the coroutine has nothing useful to do. A coroutine is a stateful
generalisation of the concept of subroutine.</p> <p name=,3689" id=,3689" class=,graf graf-p
graf-after-p“>A subroutine is your good old-fashioned function or method. You invoke the subroutine
to perform a computation. You may invoke it again, but it does not hold state between the two
invocations. Every invocation is a fresh one and same computation is performed.</p> <p
name=,eld3" id=,eld3" class=,graf graf-p graf-after-p“>A coroutine, on the other hand, is a cute
little <strong class=, markup-strong markup-p-strong“>stateful widget. It looks like a
subroutine, but it maintains state in between executions. In other words, when a coroutine
“returns” (yields control) it simply means that it has <strong class=, markup-strong
markup-p-strong“>paused its execution (with some saved state). So when you
“invoke” (give control to) the coroutine subsequently, it would be correct to say that
the coroutine has <strong class=, markup-strong markup-p-strong“>resumed its execution
(from the saved state).</p> <blockquote name=,e254" id=,e254" class=,graf graf-blockquote graf-
after-p*“ readability=,6"“> <p>Coroutines look like a normal function, but in their behaviour they are
stateful objects with

markup--blockquote-code"

resume()

and

markup--blockquote-code"

pause()

 — like methods.</p> </blockquote> <p name=,439f" id=,439f* class=, graf
graf-p graf-after-blockquote“>In Python 3.5+, the way a <strong class=, markup-strong markup-p-
strong“>coroutine pauses itself is using the

markup--p-code"

await

https://schnipsl.qgelm.de/ Printed on 2025/07/11 13:29

https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=0
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=1
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=2

2025/07/11 13:29 3/7 A simple introduction to Python’s asyncio - Hacker Noon

keyword. Inside a coroutine, when you

markup--p-code"

await

on another coroutine, you step off the event loop and schedule the awaited coroutine to run <strong
class=,markup-strong markup-p-strong“>immediately. That is, an

markup--p-code"

await other coroutine

inside a coroutine will pause it, and schedule the coroutine

markup--p-code"

other coroutine

to run immediately.</p> <blockquote name=,0dc5" id=,0dc5" class=, graf graf-blockquote graf-
after-p“ readability=,4"> <p>Note that the event loop does not preempt a running coroutine. Only a
coroutine can pause itself.</p> </blockquote> <p name=, eb7e" id=,eb7e" class=,graf graf-p graf-
after-blockquote“>Below is a very simple example <em class=,markup-em markup-p-em*“>(Python
3.5+) of how coroutines cooperate with each other. We will use a pre-defined coroutine

markup--p-code"

asyncio.sleep

to help us simulate blocking tasks for this example, but it could be anything in a real world scenario
like a network request, db query etc.</p> <p name=, 75c1" id=,75cl" class=,graf graf-p graf-
after-p“>Note that the <strong class=, markup-strong markup-p-strong“>code runs in a single
thread and yet, the output will have interleaved print statements. This happens because
when a coroutine gets blocked, it steps off the loop, so that the other one can run (yay! asynchronous
programming with asyncio).</p> <figure name=,977e" id=,977e" class=,graf graf-figure
graf-iframe graf-after-p“> <figcaption class=,imageCaption“>python run
coroutine_example.py</figcaption></figure><p name=,72f7" id=, 72f7" class=, graf graf-p graf-
after-figure“>Some points to note</p> <ul class=, postList“><li name=,05d5" id=,05d5"

class=, graf graf-li graf-after-p“>Calling a coroutine definition <strong class=, markup-strong
markup-li-strong“>does not execute it. It initialises a <em class=, markup-em markup-li-
em“>coroutine object. You

markup--li-code"

await

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=3
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=4
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=5
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=6
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=7

Last
update:
2021/12/06
15:24

wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon https://schnipsl.qgelm.de/doku.php?id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon

on <em class=, markup-em markup-li-em“>coroutine objects, not <em class=,markup-em
markup-li-em*“>coroutine definition as you can see in

markup--li-code"

line 8

and

markup--li-code"

line 17

above. <li name=,e2¢e9" id=,e2e9" class=,graf graf-li graf-after-li“><strong

class=, markup-strong markup-li-strong“>Event loop runs tasks, not <em

class=, markup-em markup-li-em“>coroutine objects directly. Tasks are a wrapper around
<em class=, markup-em markup-li-em“>coroutine objects. When you write

markup--li-code"

await coroutine object

you essentially schedule a wrapper task to be run on the event loop <strong class=, markup-strong
markup-li-strong“>immediately. <li name=, ele7" id=,ele7" class=,graf graf-li graf-
after-li“>

markup--li-code"

asyncio.sleep

is a coroutine as well, provided by the asyncio library.

markup--li-code"

asyncio.sleep(2)

initialises a coroutine object with a value of 2 seconds. When you

markup--li-code"

await

https://schnipsl.qgelm.de/ Printed on 2025/07/11 13:29

https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=8
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=9
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=10
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=11
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=12
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=13

2025/07/11 13:29 5/7 A simple introduction to Python’s asyncio - Hacker Noon

on it, you give control of the event loop to it. Sleep coroutine is smart and does not block the loop. It
immediately releases control, simply asking the loop to wake it up after the specified time. When the
time expires, it is given back the control and it immediately returns, thereby unblocking its caller (in
the above example

markup--li-code"

coroutine 1

or the

markup--li-code"

coroutine 2

). <li name=,f140" id=,f140" class=,graf graf-li graf-after-li“>The above example had three
different types of coroutines that ran on the event loop — 

markup--li-code"

coroutine 1

markup--li-code"

coroutine 2

and

markup--li-code"

asyncio.sleep

. However, four different tasks ran on the loop, corresponding to the following coroutine
objects &+#8212; 

markup--li-code"

coroutine 1()

and

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=14
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=15
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=16
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=17
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=18
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=19

Last
update:
2021/12/06
15:24

wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon https://schnipsl.qgelm.de/doku.php?id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon

markup--li-code"

coroutine 2()

scheduled at

markup--li-code"

line 25

markup--li-code"

asyncio.sleep(4)

scheduled at

markup--li-code"

line 8

and

markup--li-code"

asyncio.sleep(5)

scheduled at

markup--li-code"

line 17

 <li name=,a37f" id=,a37f" class=,graf graf-li graf-after-li“>Another way to schedule tasks
(though not immediately) on the loop is using the

markup--li-code"

<a
href="https://docs.python.org/3/library/asyncio-task.html#asyncio.ensur
e future" data-
href="https://docs.python.org/3/library/asyncio-task.html#asyncio.ensur

https://schnipsl.qgelm.de/ Printed on 2025/07/11 13:29

https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=20
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=21
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=22
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=23
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=24
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=25
https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=26

2025/07/11 13:29 717 A simple introduction to Python’s asyncio - Hacker Noon

e future" class="markup--anchor markup--li-anchor" rel="noopener"
target="_ blank">ensure future()

or the

markup--li-code"

<a
href="https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.
AbstractEventLoop.create task" data-
href="https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.
AbstractEventLoop.create task" class="markup--anchor markup--li-anchor"
rel="noopener" target=" blank">AbstractEventLoop.create task()

methods, both of which accept a coroutine object. Example code in the end demonstrates these
methods. <h4 name=,f57b" id=,f57b" class=,graf graf-h4 graf-after-li“>A more realistic
yet simple example</h4> <figure name=,49df" id=,49df" class=, graf graf-figure graf-iframe
graf-after-h4“> <figcaption class=,imageCaption“>python run
asyncio_example.py</figcaption></figure><h4 name=,6661" id=,6661" class=,graf graf-h4 graf-
after-figure“>Python at ArchSaber</h4> <p name=,6005" id=,6005" class=,graf graf-p graf-
after-h4“>At <a href=,,http://apm.archsaber.com” data-href=, http://apm.archsaber.com”
class=,markup-anchor markup-p-anchor” rel=,noopener” target=,_blank“>ArchSaber one of
our aim has always been to dig insights deep from the application code of our customers. A lot of our
clients depend upon our APM solution for Python. As a result we make great efforts in understanding
the intricacies of the language and the frameworks around it. We ourselves rely heavily on
Python — a lot of our analytics engine and ML code is written in Python,
through which we push real-time root cause analysis to our clients’ production issues.</p>
<blockquote name=,470c" id=,470c" class=,graf graf-pullquote graf-after-p“ readability=,5">
<p>Thanks for reading. If you like this post, please subscribe and share.</p> </blockquote>
<figure name=,09ef" id=, 09ef" class=, graf graf-figure graf-iframe graf-after-pullquote“>
</figure><figure name=,85da" id=,85da" class=, graf graf-figure graf-after-figure
graf-trailing“><div class=,aspectRatioPlaceholder is-locked c6“> <a href=,https://goo.gl/w4Pbea“
data-href=, https://goo.gl/w4Pbea” class=,graf-imageAnchor” data-action=,image-link“ data-action-
observe-only=,true“><img class=,graf-image” data-image-id=, 1*PZjwR1Nbluff5IMI6Y1T6g@2x.png"
data-width=,1400" data-height=,700" src=,,https://cdn-
images-1.medium.com/max/1600/1*PZjwR1NbIuff5IMI6Y1T6g@2x.png“/></div> </figure>
</html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon “Jbr

Last update: 2021/12/06 15:24

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/doku.php?do=export_code&id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon&codeblock=27
http://apm.archsaber.com
http://apm.archsaber.com
https://goo.gl/w4Pbea
https://goo.gl/w4Pbea
https://cdn-images-1.medium.com/max/1600/1
https://cdn-images-1.medium.com/max/1600/1
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:a-simple-introduction-to-pythons-asyncio--hacker-noon

	[A simple introduction to Python’s asyncio – Hacker Noon]
	A simple introduction to Python’s asyncio – Hacker Noon

