2025/08/02 11:28 1/2 Be your own certificate authority

Be your own certificate authority

Originalartikel
Backup

<html> <p>The Transport Layer Security (TLS) model,
which is sometimes referred to by the older name SSL, is based on the concept of certificate authorities
(CAs). These authorities are trusted by browsers and operating systems and, in turn,
sign servers' certificates to validate their ownership.</p> <p>However, for an intranet,
a microservice architecture, or integration testing, it is sometimes useful to have a local
CA: one that is trusted only internally and, in turn, signs local servers' certificates.</p>
<p>This especially makes sense for integration tests. Getting certificates can be a burden because
the servers will be up for minutes. But having an ,ignore certificate” option in the code could allow it
to be activated in production, leading to a security catastrophe.</p> <p>A CA certificate is not much
different from a regular server certificate; what matters is that it is trusted by local code. For
example, in the requests library, this can be done by setting the
REQUESTS_CA BUNDLE variable to a directory containing this certificate.</p>
<p>In the example of creating a certificate for integration tests, there is no need for a long-
lived certificate: if your integration tests take more than a day, you have already failed.</p>
<p>So, calculate yesterday and tomorrow as the validity
interval:</p> <p>&agt;>> import datetime
> > > one_day =
datetime.timedelta(days=1)
>>> today = datetime.date.today()
> >>
yesterday = today - one_day
>> > tomorrow = today - one_day</p> <p>Now you are
ready to create a simple CA certificate. You need to generate a private key, create a public key, set
up the ,parameters” of the CA, and then self-sign the certificate: a CA certificate is
always self-signed. Finally, write out both the certificate file as well as the private key
file.</p> <div class=, geshifilter text geshifilter-text” readability=,55“>from
cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives
import hashes, serialization
from cryptography import x509
from cryptography.x509.0id
import NameOID <p>private_key = rsa.generate_private_key(

public_exponent=65537,
 key size=2048,

backend=default_backend()
)
public_key = private_key.public_key()
builder =
x509.CertificateBuilder()
builder = builder.subject name(x509.Name([

x509.NameAttribute(NameOID.COMMON_NAME, 'Simple Test CA'),
]))
builder =
builder.issuer_name(x509.Name([

x509.NameAttribute(NameOID.COMMON_NAME, 'Simple Test CA'),
]))
builder =
builder.not_valid_before(yesterday)
builder = builder.not_valid_after(tomorrow)
builder =
builder.serial_number(x509.random_serial number())
builder =
builder.public_key(public_key)
builder = builder.add_extension(

x509.BasicConstraints(ca=True, path_length=None),

critical=True)
certificate = builder.sign(
 private_key=private key,
algorithm=hashes.SHA256(),

backend=default _backend()
)
private_bytes = private key.private bytes(

 encoding=serialization.Encoding.PEM,

format=serialization.PrivateFormat.TraditionalOpenSSL,

encryption_algorithm=serialization.NoEncrption())
public_bytes =
certificate.public_bytes(
 encoding=serialization.Encoding.PEM)
with

Qgelm - https://schnipsl.qgelm.de/

https://opensource.com/article/19/4/certificate-authority
https://www.qgelm.de/wb2html/wb519.html
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Certificate_authority

Last update:
2021/12/06 wallabag:be-your-own-certificate-authority https://schnipsl.qgelm.de/doku.php?id=wallabag:be-your-own-certificate-authority
15:24

open(,ca.pem”, ,wb") as fout:
 fout.write(private_bytes +
public_bytes)
with open(,ca.crt”, ,wb*) as fout:

fout.write(public_bytes)</p> </div> <p>In general, a real CA will expect a certificate signing
request (CSR) to sign a certificate. However, when you are your own CA, you can make your own
rules! Just go ahead and sign what you want.</p> <p>Continuing with the integration test example,
you can create the private keys and sign the corresponding public keys right then. Notice
COMMON_NAME needs to be the ,server name” in the https
URL. If you've configured name lookup, the needed server will respond on
service.test.local.</p> <p>service_private key =
rsa.generate_private_key(
 public_exponent=65537,

key size=2048,
 backend=default_backend()
)
service_public_key =
service_private_key.public_key()
builder = x509.CertificateBuilder()
builder =
builder.subject_name(x509.Name([

 x509.NameAttribute(NameOID.COMMON_NAME, 'service.test.local')
]))
builder =
builder.not_valid_before(yesterday)
builder = builder.not valid_after(tomorrow)
builder =
builder.public_key(public_key)
certificate = builder.sign(

private_key=private_key, algorithm=hashes.SHA256(),

backend=default_backend()
)
private_bytes =

service_private_key.private bytes(

encoding=serialization.Encoding.PEM,

format=serialization.PrivateFormat.TraditionalOpenSSL,

encryption_algorithm=serialization.NoEncrption())
public_bytes =
certificate.public_bytes(
 encoding=serialization.Encoding.PEM)
with
open(,service.pem”, ,wb") as fout:
 fout.write(private_bytes +
public_bytes)</p> <p>Now the service.pem file has a private key and a
certificate that is ,valid“: it has been signed by your local CA. The file is in a format that can be given
to, say, Nginx, HAProxy, or most other HTTPS servers.</p> <p>By applying this logic to testing
scripts, it's easy to create servers that look like authentic HTTPS servers, as long as the client is
configured to trust the right CA.</p> </htmI>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:be-your-own-certificate-authority 3

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:28

https://en.wikipedia.org/wiki/Certificate_signing_request
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:be-your-own-certificate-authority

	[Be your own certificate authority]
	Be your own certificate authority

