2025/09/16 15:05 1/8 Crypt

Crypt

Originalartikel
Backup

<html> <p>The

crypt

remote encrypts and decrypts another remote.</p> <p>To use it first set up the underlying remote
following the config instructions for that remote. You can also use a local pathname instead of a
remote which will encrypt and decrypt from that directory which might be useful for encrypting onto a
USB stick for example.</p> <p>First check your chosen remote is working - we’ll call it
remote:path

in these docs. Note that anything inside

remote:path

will be encrypted and anything outside won’t. This means that if you are using a bucket
based remote (eg S3, B2, swift) then you should probably put the bucket in the remote

s3:bucket
. If you just use
s3:

then rclone will make encrypted bucket names too (if using file name encryption) which may or may
not be what you want.</p> <p>Now configure

crypt

using

rclone config

. We will call this one
secret
to differentiate it from the
remote

.</p> <pre>No remotes found - make a new one n) New remote s) Set configuration password q)
Quit config n/s/q> n name> secret Type of storage to configure. Choose a number from below,

Qgelm - https://schnipsl.qgelm.de/

https://rclone.org/crypt/
https://www.qgelm.de/wb2html/wb85.html

Last update: 2021/12/06 15:24 wallabag:crypt https://schnipsl.qgelm.de/doku.php?id=wallabag:crypt

or type in your own value 1 / Amazon Drive
\ "amazon cloud drive"

2 / Amazon S3 (also Dreamhost, Ceph, Minio)
\ “s3"

3 / Backblaze B2

\ IIb2II
4 |/ Dropbox
\ "dropbox"

5 / Encrypt/Decrypt a remote
\ "crypt"
6 / Google Cloud Storage (this is not Google Drive)
\ "google cloud storage"
7 / Google Drive
\ "drive"
8 / Hubic
\ "hubic"
9 / Local Disk
\ "local"
10 / Microsoft OneDrive
\ "onedrive"
11 / Openstack Swift (Rackspace Cloud Files, Memset Memstore, OVH)
\ "swift"
12 / SSH/SFTP Connection
\ "sftp"

13 / Yandex Disk

https://schnipsl.qgelm.de/ Printed on 2025/09/16 15:05

2025/09/16 15:05 3/8 Crypt

\ "yandex"

Storage> 5 Remote to encrypt/decrypt. Normally should contain a ":' and a path, eg
~myremote:path/to/dir“, ,myremote:bucket” or maybe ,myremote:” (not recommended). remote>
remote:path How to encrypt the filenames. Choose a number from below, or type in your own value 1
/ Don't encrypt the file names. Adds a ,,.bin“ extension only.

\ "off"

2 / Encrypt the filenames see the docs for the details.
\ "standard"

3/ Very simple filename obfuscation.
\ "obfuscate"

filename_encryption> 2 Password or pass phrase for encryption. y) Yes type in my own password
g) Generate random password y/g> y Enter the password: password: Confirm the password:
password: Password or pass phrase for salt. Optional but recommended. Should be different to the
previous password. y) Yes type in my own password g) Generate random password n) No leave this
optional password blank y/g/n> g Password strength in bits. 64 is just about memorable 128 is
secure 1024 is the maximum Bits> 128 Your password is: JAsJvRcgR-_veXNfy sGmQ Use this
password? y) Yes n) No y/n> y Remote config

[secret] remote = remote:path filename_encryption = standard password = * ENCRYPTED *
password2 = * ENCRYPTED *

y) Yes this is OK e) Edit this remote d) Delete this remote y/e/d> y </pre>
<p>Important The password is stored in the config file is lightly obscured so it
isn’t immediately obvious what it is. It is in no way secure unless you use config file
encryption.</p> <p>A long passphrase is recommended, or you can use a random one. Note that if
you reconfigure rclone with the same passwords/passphrases elsewhere it will be compatible - all the
secrets used are derived from those two passwords/passphrases.</p> <p>Note that rclone does not
encrypt</p> file length - this can be calcuated within 16 bytes modification time -
used for syncing <h2 id=,specifying-the-remote”>Specifying the remote</h2> <p>In
normal use, make sure the remote has a

in. If you specify the remote without a

then rclone will use a local directory of that name. So if you use a remote of

Qgelm - https://schnipsl.qgelm.de/

Last update: 2021/12/06 15:24 wallabag:crypt https://schnipsl.qgelm.de/doku.php?id=wallabag:crypt

/path/to/secret/files
then rclone will encrypt stuff to that directory. If you use a remote of
name
then rclone will put files in a directory called
name
in the current directory.</p> <p>If you specify the remote as
remote:path/to/dir
then rclone will store encrypted files in
path/to/dir
on the remote. If you are using file name encryption, then when you save files to
secret:subdir/subfile
this will store them in the unencrypted path
path/to/dir
but the
subdir/subpath
bit will be encrypted.</p> <p>Note that unless you want encrypted bucket names (which are difficult
to manage because you won’t know what directory they represent in web interfaces etc), you
should probably specify a bucket, eg
remote:secretbucket
when using bucket based remotes such as S3, Swift, Hubic, B2, GCS.</p> <h2
id=,example“>Example</h2> <p>To test | made a little directory of files using
“standard” file name encryption.</p> <pre>plaintext/ ├──,;
file0.txt ├── filel.txt └── subdir
├── file2.txt
├── file3.txt
└── subsubdir

└──,; filed.txt

</pre> <p>Copy these to the remote and list them back</p> <pre>$ rclone -q copy plaintext
secret: $ rclone -q Is secret:

https://schnipsl.qgelm.de/ Printed on 2025/09/16 15:05

2025/09/16 15:05 5/8 Crypt

filel.txt

fileO.txt

subdir/file2.txt
subdir/subsubdir/filed.txt
subdir/file3.txt

O © 00O

</pre> <p>Now see what that looked like when encrypted</p> <pre>$ rclone -q Is remote:path

55 hagjclgavj2mbigm6u6cnjjqcg

54 v05749mltvv1tfd4onltund6bgls

57 86vhrsv86mpbtd3a®akjuqslj8/dlj7fkqgdkdq72emafg7a7s41luo

58
86vhrsv86mpbtd3afakjuqgs1j8/7uu829995du6o42n320tfhjqp4/b9pausrfansjth5ob3jkdq
d4lc

56 86vhrsv86mpbtd3a®akjuqslj8/8njhlsk437gttmep3p70g8laps

</pre> <p>Note that this retains the directory structure which means you can do this</p> <pre>$
rclone -q Is secret:subdir

8 file2.txt
9 file3.txt
10 subsubdir/file4.txt

</pre> <p>If don’t use file name encryption then the remote will look like this - note the
.bin

extensions added to prevent the cloud provider attempting to interpret the data.</p> <pre>$ rclone
-q Is remote:path

54 file0O.txt.bin

57 subdir/file3.txt.bin

56 subdir/file2.txt.bin

58 subdir/subsubdir/file4.txt.bin
55 filel.txt.bin

</pre> <h3 id=,file-name-encryption-modes“>File name encryption modes</h3> <p>Here are
some of the features of the file name encryption modes</p> <p>O0ff</p> doesn’t
hide file names or directory structure allows for longer file names (~246 characters)
can use sub paths and copy single files <p>Standard</p> file names
encrypted file names can’t be as long (~156 characters) can use sub
paths and copy single files directory structure visibile identical files names will
have identical uploaded names can use shortcuts to shorten the directory recursion
<p>0bfuscation</p> <p>This is a simple “rotate” of the filename, with each
file having a rot distance based on the filename. We store the distance at the beginning of the
filename. So a file called “hello” may become “53.jgnnq”</p>
<p>This is not a strong encryption of filenames, but it may stop automated scanning tools from
picking up on filename patterns. As such it’s an intermediate between “0ff”
and “standard&+#8221;. The advantage is that it allows for longer path segment names.</p>
<p>There is a possibility with some unicode based filenames that the obfuscation is weak and may

Qgelm - https://schnipsl.qgelm.de/

Last update: 2021/12/06 15:24 wallabag:crypt https://schnipsl.qgelm.de/doku.php?id=wallabag:crypt

map lower case characters to upper case equivalents. You can not rely on this for strong
protection.</p> file names very lightly obfuscated file names can be longer than
standard encryption can use sub paths and copy single files directory structure
visibile identical files names will have identical uploaded names <p>Cloud
storage systems have various limits on file name length and total path length which you are more
likely to hit using “Standard” file name encryption. If you keep your file names to
below 156 characters in length then you should be OK on all providers.</p> <p>There may be an
even more secure file name encryption mode in the future which will address the long file name
problem.</p> <p>Crypt stores modification times using the underlying remote so support depends
on that.</p> <p>Hashes are not stored for crypt. However the data integrity is protected by an
extremely strong crypto authenticator.</p> <p>Note that you should use the

rclone cryptcheck
command to check the integrity of a crypted remote instead of

rclone check
which can’t check the checksums properly.</p> <h3 id=,specific-options“>Specific
options</h3> <p>Here are the command line options specific to this cloud storage system.</p> <h4
id=,,crypt-show-mapping“>-crypt-show-mapping</h4> <p>If this flag is set then for each file that
the remote is asked to list, it will log (at level INFO) a line stating the decrypted file name and the
encrypted file name.</p> <p>This is so you can work out which encrypted names are which
decrypted names just in case you need to do something with the encrypted file names, or for
debugging purposes.</p> <h2 id=, backing-up-a-crypted-remote“>Backing up a crypted
remote</h2> <p>If you wish to backup a crypted remote, it it recommended that you use

rclone sync

on the encrypted files, and make sure the passwords are the same in the new encrypted remote.</p>
<p>This will have the following advantages</p>

rclone sync
will check the checksums while copying you can use
rclone check

between the encrypted remotes you don’t decrypt and encrypt unecessarily
<p>For example, let’s say you have your original remote at

remote:

with the encrypted version at
eremote:

with path

remote:crypt

https://schnipsl.qgelm.de/ Printed on 2025/09/16 15:05

2025/09/16 15:05 7/8 Crypt

. You would then set up the new remote
remote2:
and then the encrypted version
eremote2:
with path

remote2:crypt

using the same passwords as
eremote:

.</p> <p>To sync the two remotes you would do</p> <pre>rclone sync remote:crypt remote2:crypt
</pre> <p>And to check the integrity you would do</p> <pre>rclone check remote:crypt
remote2:crypt </pre> <h2 id=,file-formats“>File formats</h2> <h3 id=file-encryption“>File
encryption</h3> <p>Files are encrypted 1:1 source file to destination object. The file has a header
and is divided into chunks.</p> 8 bytes magic string

RCLONE\x00\x00

 24 bytes Nonce (IV) <p>The initial nonce is generated from the operating
systems crypto strong random number genrator. The nonce is incremented for each chunk read
making sure each nonce is unique for each block written. The chance of a nonce being re-used is
miniscule. If you wrote an exabyte of data (10¹⁸ bytes) you would have a probability of
approximately 2×10⁻³² of re-using a nonce.</p> <h4
id=,chunk“>Chunk</h4> <p>Each chunk will contain 64kB of data, except for the last one which
may have less data. The data chunk is in standard NACL secretbox format. Secretbox uses XSalsa20
and Poly1305 to encrypt and authenticate messages.</p> <p>Each chunk contains:</p>
16 Bytes of Poly1305 authenticator 1 - 65536 bytes XSalsa20 encrypted data
<p>64k chunk size was chosen as the best performing chunk size (the authenticator takes too
much time below this and the performance drops off due to cache effects above this). Note that these
chunks are buffered in memory so they can’t be too big.</p> <p>This uses a 32 byte (256
bit key) key derived from the user password.</p> <h4 id=,examples“>Examples</h4> <p>1 byte
file will encrypt to</p> 32 bytes header 17 bytes data chunk <p>49
bytes total</p> <p>1MB (1048576 bytes) file will encrypt to</p> 32 bytes header
16 chunks of 65568 bytes <p>1049120 bytes total (a 0.05% overhead). This is the
overhead for big files.</p> <h3 id=,,name-encryption“>Name encryption</h3> <p>File names are
encrypted segment by segment - the path is broken up into

/

separated strings and these are encrypted individually.</p> <p>File segments are padded using
using PKCS#7 to a multiple of 16 bytes before encryption.</p> <p>They are then encrypted with
EME using AES with 256 bit key. EME (ECB-Mix-ECB) is a wide-block encryption mode presented in the
2003 paper “A Parallelizable Enciphering Mode” by Halevi and Rogaway.</p>
<p>This makes for determinstic encryption which is what we want - the same filename must encrypt

Qgelm - https://schnipsl.qgelm.de/

Last update: 2021/12/06 15:24 wallabag:crypt https://schnipsl.qgelm.de/doku.php?id=wallabag:crypt

to the same thing otherwise we can’t find it on the cloud storage system.</p> <p>This
means that</p> filenames with the same name will encrypt the same filenames
which start the same won’t have a common prefix <p>This uses a 32 byte key
(256 bits) and a 16 byte (128 bits) IV both of which are derived from the user password.</p>
<p>After encryption they are written out using a modified version of standard

base32

encoding as described in RFC4648. The standard encoding is modified in two ways:</p> it
becomes lower case (no-one likes upper case filenames!) we strip the padding character

 <p>

base32

is used rather than the more efficient
base64

so rclone can be used on case insensitive remotes (eg Windows, Amazon Drive).</p> <h3 id=,key-
derivation“>Key derivation</h3> <p>Rclone uses

scrypt
with parameters
N=16384, r=8, p=1

with a an optional user supplied salt (password2) to derive the 32+32+16 = 80 bytes of key material
required. If the user doesn’t supply a salt then rclone uses an internal one.</p> <p>

scrypt

makes it impractical to mount a dictionary attack on rclone encrypted data. For full protection agains
this you should always use a salt.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:crypt

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/ Printed on 2025/09/16 15:05

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:crypt

	[Crypt]
	Crypt

