
2025/08/02 11:32 1/5 Deep Learning in your browser

Qgelm - https://schnipsl.qgelm.de/

Deep Learning in your browser

Originalartikel

Backup

<html> <p>

 <h3>Introduction</h3>
 There are two ways to use the library: inside the browser, or on a
server using node.js.
 </p><div class="sec" readability="51">
 <h3>In-browser Use: Skeleton Code and Setup</h3>
 <p>You might find this section useful if you are relatively new to web
development. The fastest way to obtain the library in a plug-and-play way if
you don't care about developing is through this link to <a
href="http://cs.stanford.edu/people/karpathy/convnetjs/build/convnet-min.js"
>convnet-min.js, which contains the minified library. Alternatively, you
can also choose to download the latest release of the
library from Github.The file you are probably most interested in is
<i>build/convnet-min.js</i>, which contains the entire library. To use it,
create a a bare-bones <i>index.html</i> file in some folder and copy
<i>build/convnet-min.js</i> to the same folder. Here is some example code to
get you started:
 </p>
 <pre class="brush: js; toolbar: false;">

&lthtml&gt &lthead&gt &lttitle&gtminimal demo&lt/title&gt
&lt!– CSS goes here –&gt &ltstyle&gt body {

background-color: #FFF; /* example... */

} &lt/style&gt &lt!– import convnetjs library –&gt &ltscript src=„convnet-
min.js“&gt&lt/script&gt &lt!– javascript goes here –&gt &ltscript
type=„text/javascript“&gt function periodic() {

var d = document.getElementById('egdiv');
d.innerHTML = 'Random number: ' + Math.random()

} var net; declared outside -&gt global variable in window scope function start() { this gets
executed on startup

//...
net = new convnetjs.Net();
// ...
// example of running something every 1 second
setInterval(periodic, 1000);

} &lt/script&gt &lt/head&gt &ltbody onload=„start()“&gt &ltdiv

http://cs.stanford.edu/people/karpathy/convnetjs/started.html
https://www.qgelm.de/wb2html/wb202.html

Last update:
2021/12/06 15:24 wallabag:deep-learning-in-your-browser https://schnipsl.qgelm.de/doku.php?id=wallabag:deep-learning-in-your-browser

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:32

id=„egdiv“&gt&lt/div&gt &lt/body&gt &lt/html&gt

 </pre>
 <p>
 Here, we are placing both CSS and Javascript into head of the html
file, but normally people like to separate these out into different files.
Note how the body tag contains an <i>onload</i> attribute which executes the
<i>start()</i> method once the file is loaded: Here you can initialize
everything (including your network). The function <i>periodic()</i> is wired
up to execute every 1000ms.
 </p>
 <p>
 I recommend you use Chrome as your browser. Drag and drop your
<i>index.html</i> into the address bar to load up your local html file! I
recommend always keeping your console open: right-click, choose "Inspect
Element" and go to the "Console" tab. You can write to this using
<i>console.log("test")</i>.
 </p>
 <p>
 In some cases, if you are trying to load images or other data
dynamically, you might run into issues with running local html files and
cross-origin policies. For example, the MNIST or CIFAR demos will not work
locally because they load images dynamically. A simple work-around is to run
a dummy local web server in your folder. On Ubuntu for example, cd into it,
start up one: <i>python -m SimpleHTTPServer</i>, and then navigate to the
local address that python prints for you in your browser to see your files
in that folder.
 </p>
 </div><div class="sec" readability="122">
 <h3>Example: Neural Net Classification</h3>
 <p>In a classification setting the network is asked to provide a
prediction among a fixed set of distinct classes. Lets create a simple 2
layer neural network binary classifier (i.e. two distinct classes) that
takes 2-dimensional data points. The first layer of every network must be an
'input' layer in which we declare the size of the input data. ConvNetJS
layers are based on Vol class that represents a 3-dimensional volume of
numbers. The 3 dimensions are (sx, sy, depth), but if you're not working
with images we will always keep sx = 1, sy = 1, and only worry about depth.
Therefore, we will declare the size of input volume to be 1x1x2 (out_sx = 1,
out_sy = 1, out_depth = 2). The next three layers will be fully connected
layers ('fc' for short) of neurons, and the last layer will be a classifer
layer (called 'softmax') which outputs probabilities.</p>
 <pre class="brush: js; toolbar: false;">
 var layer_defs = [];
 // input layer of size 1x1x2 (all volumes are 3D)
 layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
 // some fully connected layers
 layer_defs.push({type:'fc', num_neurons:20, activation:'relu'});
 layer_defs.push({type:'fc', num_neurons:20, activation:'relu'});
 // a softmax classifier predicting probabilities for two classes: 0,1

2025/08/02 11:32 3/5 Deep Learning in your browser

Qgelm - https://schnipsl.qgelm.de/

 layer_defs.push({type:'softmax', num_classes:2});
 // create a net out of it
 var net = new convnetjs.Net();
 net.makeLayers(layer_defs);
 // the network always works on Vol() elements. These are essentially
 // simple wrappers around lists, but also contain gradients and dimensions
 // line below will create a 1x1x2 volume and fill it with 0.5 and -1.3
 var x = new convnetjs.Vol([0.5, -1.3]);
 var probability_volume = net.forward(x);
 console.log('probability that x is class 0: ' + probability_volume.w[0]);
 // prints 0.50101
 </pre>
 <p>
 So we see that the network (which is initialized randomly) assigns
probability 50.1% to the point [0.5, -1.3] being class 0. Since softmax
ensures that probabilities always sum to one, if you printed probability of
class 1, you would get 0.49899, or roughly 49.9%. Note that convnetjs.Vol is
a 3D volume class that the entire library is based on. It is a very thin
wrapper around a simple array of numbers (field .w), but in addition stores
the dimensions of the volume: sx (width), sy (height), and depth, and also
the gradients (field .dw). In simple non-convolutional networks, the width
and height are always simply kept at 1.
 </p>
 <p>
 Lets now actually provide this as data to the network, saying x
should in fact map to 0 with a high probability. We will use a built in
Trainer class:
 </p>
 <pre class="brush: js; toolbar: false;">
 var trainer = new convnetjs.Trainer(net, {learning_rate:0.01,
l2_decay:0.001});
 trainer.train(x, 0);
 var probability_volume2 = net.forward(x);
 console.log('probability that x is class 0: ' + probability_volume2.w[0]);
 // prints 0.50374
 </pre>
 <p>The trainer takes a whole bunch of (optional) parameters, but for
now just notice that once we backpropagated the information that x is in
fact class 0, the network adjusts its parameters to make that more likely
(0.50374, up from 0.50101). To train on an actual dataset, you simply loop
through all your points at random and repeatedly backpropagate their true
class through the network, which gradually adjusts its weights to make your
predictions more likely.
 </p>
 <h3>Example: Neural Net Regression</h3>
 <p>Regression is the task of predicting real-valued outputs, not just
probabilities of a fixed number of classes. For example, we could be
predicting the height of a person. To set up a regression network, we
proceed very similar to the example above, but replace the softmax
(classifier) with a regression loss layer:
 </p>

Last update:
2021/12/06 15:24 wallabag:deep-learning-in-your-browser https://schnipsl.qgelm.de/doku.php?id=wallabag:deep-learning-in-your-browser

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:32

 <pre class="brush: js; toolbar: false;">
 var layer_defs = [];
 layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
 layer_defs.push({type:'fc', num_neurons:5, activation:'sigmoid'});
 layer_defs.push({type:'regression', num_neurons:1});
 var net = new convnetjs.Net();
 net.makeLayers(layer_defs);
 var x = new convnetjs.Vol([0.5, -1.3]);
 // train on this datapoint, saying [0.5, -1.3] should map to value 0.7:
 // note that in this case we are passing it a list, because in general
 // we may want to regress multiple outputs and in this special case we
 // used num_neurons:1 for the regression to only regress one.
 var trainer = new convnetjs.SGDTrainer(net,
 {learning_rate:0.01, momentum:0.0, batch_size:1,
l2_decay:0.001});
 trainer.train(x, [0.7]);
 // evaluate on a datapoint. We will get a 1x1x1 Vol back, so we get the
 // actual output by looking into its 'w' field:
 var predicted_values = net.forward(x);
 console.log('predicted value: ' + predicted_values.w[0]);
 </pre>
 <p>
 Very importantly, notice that the regression loss always expects a
LIST when you call the train method (e.g. [0.7]) in this case. It is a
common mistake to instead pass in a single number, such as 0.7 alone.
 </p>

<!–

 <h3>Example: Using MagicNet for prediction</h3>
 Q: I don't know anything about Neural Networks, I don't want to and I
don't care about anything except good prediction on my data
A: Use the
MagicNet! You give it data, it gives you a good predictor. That simple.
 <pre class="brush: js; toolbar: false;">

toy data: two data points, one of class 0 and other of class 1 var train_data = [new convnetjs.Vol([1.3,
0.5]), new convnetjs.Vol([0.1, 0.7])]; var train_labels = [0, 1]; create a magic net var magicNet = new
convnetjs.MagicNet(train_data, train_labels); magicNet.onFinishBatch(finishedBatch); set a callback a
finished evaluation of a batch of networks start training MagicNet. Every call trains all candidates in
current batch on one example setInterval(function(){ magicNet.step() }, 0}); once at least one batch
of candidates is evaluated on all folds we can do prediction! function finishedBatch() { prediction
example. xout is Vol of scores

// there is also predict_soft(), which returns the full score volume for all
labels
var some_test_vol = new convnetjs.Vol([0.1, 0.2]);
var predicted_label = magicNet.predict(some_test_vol);

}

2025/08/02 11:32 5/5 Deep Learning in your browser

Qgelm - https://schnipsl.qgelm.de/

 </pre>
 <p>
 In the above example, the magicNet will call finishedBatch()
whenever a new batch of candidates finished evaluating. Every time this
happens, MagicNet's predictions will be improved as it finds better and
better models for your data over time. By default, 50 candidates are
evaluated in parallel in every batch, but this (and many other things) can
be controlled using MagicNet options. See documentation for full details.
 </p>

–>

 <h3>Example: Training a Convolutional Network for Images</h3>
 For now see either the CIFAR-10 or MNIST demos. They read images and
process them with ConvNetJS. There are no simple plug-and-play functions in
the library to plug images into ConvNetsJS, so currently it is required to
read through the code and understand how this part works.
 <h3>Example: Trainining a Reinforcement Learning Agent</h3>
 For now see the documentat
ion link and the Rei
nforcement Learning Demo
 </div>

</html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:deep-learning-in-your-browser

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:deep-learning-in-your-browser

	[Deep Learning in your browser]
	Deep Learning in your browser

