2025/08/02 11:39 1/9 ESP32 to go

ESP32 to go

Originalartikel
Backup

<html> <p class=, printversionback-to-article printversion-hide“>zurück zum
Artikel</p><figure class=, printversionlogo“><svg preserveaspectratio=,xMinYMin“
xmlns=,,http://www.w3.0rg/2000/svg" viewbox=,0 0 600 85" width=,360" height=,51“><path
d=,M230.68,63.64V59.82h6V20.65h-6V16.9h24¢8.4,0,14.86,2,19.28,656.68,9.75,6.68,17.335278.4,5
3.59,274,57.64s-10.88,6-19.28,6Zm18.08-3.75h4.35c4.88,0,8.48-1.58,10.73-4.73s3.38-8.1,3.38-14.93
-1.13-11.78-3.38-14.86-5.85-4.65-10.73-4.65h-4.35Zm73.76-11.33H299.63v.23¢0,4.28.68,7.43,2,9.3s
3.38,2.85,6.3,2.8528.71,8.71,0,0,0,5.85-1.88,9.2,9.2,0,0,0,2.85-5.55h5.18a13.44,13.44,0,0,1-5.33,8.3
3¢-2.7,1.8-6.38,2.7-11.26,2.7-5.78,0-10.2-1.5-13.28-4.58s-4.65-7.35-4.65-13.06¢0-5.55,1.58-9.83,4.73
-12.9157.58-4.65,13.13-4.65,9.75,1.65,12.68,4.885322.37,42.33,322.52,48.56Zm-12.16-3.68c0-4.35-
.38-7.43-1.2-9.23A4.19,4.19,0,0,0,305,33a4.33,4.33,0,0,0-4.13,2.63c-
.83,1.73-1.2,4.65-1.2,8.7V45h10.73Zm30.69,18.76L329.27,34.15H325.6V30.33h19.13v3.83h-4.0518.4
,21,8.4-21h-4.35V30.33h12.53v3.83h-3.83L350.06,63.64Zm62.2-15.08H380.37v.23c0,4.28.68,7.43,2,
9.353.38,2.85,6.3,2.85a8.71,8.71,0,0,0,5.85-1.88,9.2,9.2,0,0,0,2.85-5.55h5.18a13.44,13.44,0,0,1-5.33
,8.33¢-2.7,1.8-6.38,2.7-11.26,2.7-5.78,0-10.2-1.5-13.28-4.585368,52.61,368,46.91c0-5.55,1.58-9.83,4
.73-12.91s7.58-4.65,13.13-4.65,9.75,1.65,12.68,4.885403.11,42.33,403.26,48.56ZM391.1,44.88c0-4.
35-.38-7.43-1.2-9.23A4.19,4.19,0,0,0,385.7,33a4.33,4.33,0,0,0-4.13,2.63c-
.83,1.73-1.2,4.65-1.2,8.7V45H391.1Zm34.37,15h4.73v3.83H409.64V59.89n4.73V18.62h-4.73V14.87h
15.83v45Zm29.11,4.65¢-5.85,0-10.5-1.58-13.81-4.655-5-7.43-5-12.91,1.65-9.83,5-12.91,8-4.65,13.81
-4.65,10.5,1.58,13.81,4.65,5,7.43,5,12.91-1.65,9.75-5,12.915460.44,64.54,454.58,64.54Zm0-3.53a5.
05,5.05,0,0,0,5-3c1-2,1.43-5.7,1.43-11s-
.45-9-1.43-11a5.05,5.05,0,0,0-5-3,5,5,0,0,0-5,3¢-1,2-1.43,5.7-1.43,115.45,9,1.43,11A4.88,4.88,0,0,0,4
54.58,61Zm28.89-26.86h-4.73V30.33h15.83v4.229.59,9.59,0,0,1,3.83-3.9,12.61,12.61,0,0,1,5.93-1.2
8c4.73,0,8.48,1.58,11.18,4.6554.13,7.43,4.13,12.83-1.35,9.75-4.13,12.91-6.45,4.73-11.18,4.73a13,13
,0,0,1-5.93-1.28,8.76,8.76,0,0,1-3.83-3.9V73.1h5.18v3.83h-21V73.1h4.73Zm11.11,11.18v3.3¢0,3.9.5
3,6.68,1.5,8.4a5.17,5.17,0,0,0,4.8,2.63,4.89,4.89,0,0,0,4.8-2.78¢.9-1.8,1.43-5.18,1.43-9.9s-
.45-8.1-1.43-9.9a5,5,0,0,0-4.8-2.78,5.09,5.09,0,0,0-4.8,2.63C495,38.66,494.58,41.51,494.58,45.33Zm
66.78,3.23H538.47v.23¢0,4.28.68,7.43,2,9.3s3.38,2.85,6.3,2.85a28.71,8.71,0,0,0,5.85-1.88,9.2,9.2,0,0
,0,2.85-5.55h5.18a13.44,13.44,0,0,1-5.33,8.33¢-2.7,1.8-6.38,2.7-11.26,2.7-5.78,0-10.2-1.5-13.28-4.58
5-4.65-7.35-4.65-13.06¢0-5.55,1.58-9.83,4.73-12.9157.58-4.65,13.13-4.65,9.75,1.65,12.68,4.885561.
13,42.33,561.36,48.56Zm-12.23-3.68c0-4.35-
.38-7.43-1.2-9.23a4.19,4.19,0,0,0-4.2-2.63,4.33,4.33,0,0,0-4.13,2.63c-
.83,1.73-1.2,4.65-1.2,8.7V45h10.73ZM600,30v9.9h-3.53a6.44,6.44,0,0,0-1.43-4,4.61,4.61,0,0,0-3.6-1.
28,6.39,6.39,0,0,0-5.7,3.23¢-1.43,2.1-2.1,5.1-2.1,8.85V59.82h6.08v3.83h-22V59.82h4.73V34.15h-5.1
V30.33h16.21v5.93211.9,11.9,0,0,1,4.28-5.18,12.15,12.15,0,0,1,6.6-1.65¢.68,0,1.43.08,2.4.155598.8,
29.8,600,30Z" transform=,translate(0 0)" fill=,#661136"/><path
d=,M99.72,27.6h4.39v42.76h.07a8.46,8.46,0,0,1,3.15-3.07,9.34,9.34,0,0,1,4.54-1.24¢3.22,0,8.49,2,8
.49,10.4V63.26H116V49.35c0-3.88-1.46-7.25-5.64-7.25a6.33,6.33,0,0,0-5.93,4.39,5.94,5.94,0,0,0-
.29,2.12V63.26H99.72V27.6ZM130,51.91¢.07,5.93,3.88,8.42,8.35,8.42a16.93,16.93,0,0,0,6.74-1.24I.
73,3.15a18.82,18.82,0,0,1-8.05,1.54¢-7.47,0-11.93-5-11.93-12.354.32-13.11,11.35-13.11¢7.91,0,10, 7,
10,11.42313.18,13.18,0,0,1-
.15,2H130Zm12.89-3.22¢.07-2.78-1.17-7.17-6.15-7.17-4.47,0-6.44,4.1-6.74,7.17Zm14.64-16.55a2.56,
2.56,0,0,1-2.78,2.71,2.6,2.6,0,0,1-2.64-2.71,2.74,2.74,0,0,1,2.78-2.78A2.62,2.62,0,0,1,157.55,32.14Z
m-4.91,31V38.95H157V63.18Zm11.13-4.47a11.26,11.26,0,0,0,5.78,1.76¢3.22,0,4.69-1.61,4.69-3.59s-

Qgelm - https://schnipsl.qgelm.de/

https://www.heise.de/developer/artikel/ESP32-to-go-4452689.html?view=print
https://www.qgelm.de/wb2html/wb531.html
https://www.heise.de/developer/artikel/ESP32-to-go-4452689.html
http://www.w3.org/2000/svg

Last update: 2021/12/06 15:24 wallabag:esp32-to-go https://schnipsl.qgelm.de/doku.php?id=wallabag:esp32-to-go

1.24-3.22-4.54-4.47¢c-4.39-1.54-6.44-4-6.44-6.88,0-3.88,3.15-7.1,8.35-7.1A11.71,11.71,0,0,1,177.54 4
0I-1.1,3.2229.62,9.62,0,0,0-5-1.39¢-2.64,0-4,1.54-4,3.29,0,2,1.46,2.93,4.61,4.1,4.17,1.61,6.37,3.73,6.
37,7.32,0,4.25-3.29,7.32-9.08,7.32a14.37,14.37,0,0,1-6.81-1.68Zm22.92-6.81¢.07,5.93,3.88,8.42,8.3
5,8.42a16.93,16.93,0,0,0,6.74-1.241.73,3.15a18.82,18.82,0,0,1-8.05,1.54¢-7.47,0-11.93-5-11.93-12.3s
4,32-13.11,11.35-13.11¢7.91,0,10,7,10,11.42a213.18,13.18,0,0,1-
.15,2H186.69Zm12.89-3.22¢.07-2.78-1.17-7.17-6.15-7.17-4.47,0-6.44,4.1-6.74,7.17ZM70.58,57,67.5,
54.32a28,28,0,0,0,6.15-17.13¢0-17.79-13.91-29.36-31.12-29.36-23.06,0-31.12,18.23-31.12,38.58,0,1
8,13.25,32.87,31.55,32.87A45.36,45.36,0,0,0,69,71a27.71,27.71,0,0,0,4.17-3.59L75,70.06A42.67,42.
67,0,0,1,43.42,85C19.62,85.07,0,67.79,0,43.42,0,18.67,18.08,0,43,0c20.57,0,37.7,13,37.7,34.63C80.
68,42.61,76.43,51.54,70.58,57ZM48.69,27.38,34.92,58.72¢-1.17,2.64-2.93,5.71-6.22,5.71a4.12,4.12,
0,0,1-4.32-4.17¢0-1.9,1-3.66,1.68-5.341L41,20.87c1.17-2.56,2.56-4.47,5.49-4.47a4,4,0,0,1,4.17,4.17C
50.66,23,49.64,25.26,48.69,27.38ZM59.6,46.49,54.1,58.86¢-1.24,2.64-3,5.56-6.3,5.56a4,4,0,0,1-4.17
-4.17A12.72,12.72,0,0,1,45.32,55L52,40¢1.17-2.49,2.56-4.47,5.49-4.4734,4,0,0,1,4.17,4.17A16,16,0,
0,1,59.6,46.49Z" transform=,,translate(0 0)" fill=, #888"/></svg></figure><p><strong
class=,manuell vorspann“>2016 stellte Espressif eine leistungsfähige Familie von
Microcontrollern auf Basis des ESP32 vor. Dieses Blog hat den ESP32 zwar bereits früher
thematisiert, aber zum Auftakt einer Reihe von Beiträgen zu diesem Thema werden ESP32 und
entsprechende Boards noch mal genauer beleuchtet.</p> <p>Das chinesische Chip-
Unternehmen Espressif hat vor wenigen Jahren durch seinen ESP8266-Chip große Euphorie bei
Makern ausgelöst. Der ESP8266 als System-on-a-Chip (SoC) integriert sowohl einen
leistungsstarken Microcontroller als auch eine WiFi-Komponente. Entsprechende Boards sind
inzwischen schon für eine Handvoll Euros zu haben. Ich habe ESP-01-Boards bereits in diesem
Blog genutzt, um Arduinos preiswert mit dem WLAN beziehungsweise dem Internet zu verbinden. Es
ist dabei aber leicht zu übersehen, dass der ESP8266 in vielen Aspekten mit Arduinos ATMEL-
Chips mithalten kann.</p> <h3 class=,subheading“>Warum ist der ESP32 interessant?</h3>
<p>Wie auch bei Vierrad-Enthusiasten üblich soll zuerst ein Blick unter die Motorhaube
erfolgen. ESP32-Chips enthalten eine ganze Reihe von interessanten Merkmalen:</p> <ul
class=,rtelist rtelist-unordered”><Ili>Sie beherbergen meistens zwei 32-Bit-Prozessorkerne des Typs
Tensilica Xtensa LX6, die mit 160 MHz bis 240 MHz Taktfrequenz arbeiten. “Meistens”
deshalb, weil es auch eine ESP32-Variante mit nur einem Kern gibt. Der
“Laderaum” sorgt für komfortables Wohngefühl: Mit 520 KB RAM und 448
KB ROM dürften für die meisten Embedded-Anwendungen genügend Reserven
vorhanden sein. Im Gegensatz zu vielen Arduino-Boards verwendet der ESP32 3,3V als
Betriebsspannung. Der entscheidende Vorteil: Weil viele Sensoren und Aktuatoren ebenfalls mit 3,3V
arbeiten, entfällt der sonst notwendige Pegelwandler zwischen 3,3V- und 5V-
Komponenten. Da heutzutage das Thema Energiesparen vorherrscht, sei auf den Low-
Power-Modus des ESP32 verwiesen. Im Tiefschlaf (Deep Sleep) verbraucht ein ESP32-Board nur einen
Bruchteil der sonst benötigten Leistung. Das ermöglicht autonome Systeme, die im
Batterie-/Akku-Betrieb mit langer Laufzeit auskommen müssen. Diverse Schnittstellen
verbinden den Microcontroller mit der Außenwelt. Darunter befinden sich UARTS, SPI, CAN, 12C,
12S, PWM – ich spare mir aufgrund des Trägheitsprinzips die Beschreibung der diversen
Hardwareschnittstellen, da sie bis auf CAN schon in vergangenen Folgen zur Sprache kamen. Mit CAN
ist ein standardisiertes Bussystem gemeint, das häufig in Anwendungen der
Automatisierungstechnik zum Einsatz kommt. Autohersteller und ihre Zulieferer nutzen CAN zur
Kommunikation verschiedener Steuereinheiten miteinander. Damit sich analoge Werte in
digitale umwandeln lassen, verfügt der Chip über diverse ADCs (Analog Digital
Converter). Umgekehrt erlauben DACs (Digital Analog Converter) die Wandlung digitaler in analoge
Signale. Zur drahtlosen Kommunikation mit anderen Geräten integriert der ESP32
sowohl WLAN als auch Bluetooth. Letzteres war beim ESP8266 nicht möglich. 0Ohne
Firmware |ässt sich ein Microcontroller nicht nutzen. Die Firmware des ESP32 ist in einem seriell
anschließbaren externen Flash-Speicher untergebracht. Es macht daher meistens nur wenig

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:39

2025/08/02 11:39 3/9 ESP32 to go

Sinn, einen Standalone-ESP32-Chip zu erwerben, sondern stattdessen ein Board, das den
Firmwarespeicher neben anderer Features – zum Beispiel einen USB-Anschluss –
umfasst. Zu guter Letzt: Ein integrierter Hall-Sensor erlaubt die Messung
elektromagnetischer Felder. Die im ESP32 integrierte Crypto-Einheit finden in Anwendungen Einsatz,
um die Kryptographie-Operationen zu beschleunigen. <figure class=,rteinlinebild akwa-
inline-img akwa-inline-img col-Ig-12 col-md-12 col-sm-12 col-xs-12 ¢2“><img alt=,Blockbild der
ESP32-Architektur”
src=,https://heise.cloudimg.io/width/523/950.png-lossy-50.webp-lossy-50.foill/ www-heise-de /devel
oper/imgs/06/2/7/0/0/7/0/2/1-ESP32_Function_Block Diagram-189ff98ed3f48043.png*

srcset=, https://heise.cloudimg.io/width/1046/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/1-ESP32_Function_Block Diagram-189ff98ed3f48043.png_2x"
class=,cl"/></figure><p>Allerdings gibt es nicht nur eine Variante des ESP32, sondern

gefühlt ein gutes Dutzend. Die heißen dann auch mal ESP32S, firmieren je nach

Grö8#223;e als WROOM oder WROVER, haben verschiedene Erweiterungen. Uns sollen deren
Unterschiede kalt lassen. Fü:r die Hardware-Interessierten verweise ich auf die Webseite esp32.net
[1]1.</p> <h3 class=,subheading“>Come on Board</h3> <p>Selbstredend existiert
nicht das eine ESP32-Board, sondern Dutzende. Solche mit Display und solche ohne,
solche mit LoRA-Kommunikation und solche ohne. Dazu verschiedenste Formfaktoren, nach
außen gelegte Pins und dergleichen mehr.</p> <figure class=,rteinlinebild akwa-inline-img
akwa-inline-img col-Ig-12 col-md-12 col-sm-12 col-xs-12 ¢3“><img alt=,,Ein Board des Typs ESP32“
src=,https://heise.cloudimg.io/width/569/950.png-lossy-50.webp-lossy-50.foill/ www-heise-de_/devel
oper/imgs/06/2/7/0/0/7/0/2/ESP32Board-bc50dec371cb8dce.jpeg”
srcset=,,https://heise.cloudimg.io/width/1138/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/ESP32Board-bc50dec371ch8dce.jpeg 2x“ class=,c1"/><figcaption
class=,rteinlinebild _source akwa-caption“>Ein Board des Typs ESP32
(Bild: amazon.de)</figcaption></figure><p>Als NodeMCU firmieren die Boards, die im
Auslieferungszustand die Skriptsprache LUA und die entsprechende Firmware beherbergen.
Grundsätzlich gibt es unterschiedliche Firmware-Optionen, die auf ESP32-Boards laufen,
darunter zum Beispiel MicroPython (oder CircuitPython auf Adafruit-Boards), FreeRTOS (RTOS = Real-
Time Operating System), und der Arduino Core für ESP32. Letztere Option nutze ich für
den Rest dieses Blog-Postings.</p> <figure class=,rteinlinebild akwa-inline-img akwa-inline-img col-
Ig-12 col-md-12 col-sm-12 col-xs-12“><img alt=, SparcFun.com*
src=,https://heise.cloudimg.io/width/1186/950.png-lossy-50.webp-lossy-50.foill/ www-heise-de_/deve
loper/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png“
srcset=,,https://heise.cloudimg.io/width/2372/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png 2x*
class=,cl"/><figcaption class=,rteinlinebild_source akwa-caption“>Pin-Belegung des ESP32 Smart
Thing von SparkFun (Bild: SparkFun.com)</figcaption></figure><p>Zu den häufig
anzutretenden Vertreter ihrer Gattung gehören beispielsweise das Original-ESP32-Dev-Modul

von Espressif und seine zahlreichen Klone sowie das DOIT ESP32 DevKit V1. Diese gibt es in der Regel

für Preise von 5 bis 10 Euro bei den üblichen Verdächtigen (eBay, Amazon,
Watterott, EXP-TECH, Alibaba). Das finanzielle Risiko hä:lt sich also in Grenzen. Eine

Bestellung in China kommt noch etwas billiger, lohnt sich wegen der 1ä:ngeren Lieferzeiten aber
nur, wenn es einem nicht schon in den Fingern juckt.</p> <h3 class=,subheading”>Eine Frage der
Programmierung</h3> <p>Es gibt diverse Optionen, die eine Host-/Target-Entwicklung mit ESP32-

Boards unterstützen:</p> <ul class=,rtelist rtelist-unordered”“><Ili>Von Espressif selbst steht
die ESP-IDF-Plattform im Angebot. Das Open-Source-Projekt ESP32 Arduino Core liefert eine

Sammlung von Bibliotheken und Werkzeugen, mit der sich die Arduino IDE nutzen [ässt, um
Software für ESP32-Boards zu programmieren. Weiterer Vorteil: Leistungsstarke
Entwicklungsumgebungen wie Visual Studio Code verfügen über Plug-ins für

Qgelm - https://schnipsl.qgelm.de/

https://heise.cloudimg.io/width/523/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/1-ESP32_Function_Block_Diagram-189ff98ed3f48043.png
https://heise.cloudimg.io/width/523/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/1-ESP32_Function_Block_Diagram-189ff98ed3f48043.png
https://heise.cloudimg.io/width/1046/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/1-ESP32_Function_Block_Diagram-189ff98ed3f48043.png
https://heise.cloudimg.io/width/1046/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/1-ESP32_Function_Block_Diagram-189ff98ed3f48043.png
http://esp32.net
https://heise.cloudimg.io/width/569/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/ESP32Board-bc50dec371cb8dce.jpeg
https://heise.cloudimg.io/width/569/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/ESP32Board-bc50dec371cb8dce.jpeg
https://heise.cloudimg.io/width/1138/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/ESP32Board-bc50dec371cb8dce.jpeg
https://heise.cloudimg.io/width/1138/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/ESP32Board-bc50dec371cb8dce.jpeg
https://heise.cloudimg.io/width/1186/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png
https://heise.cloudimg.io/width/1186/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png
https://heise.cloudimg.io/width/2372/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png
https://heise.cloudimg.io/width/2372/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png

Last update: 2021/12/06 15:24 wallabag:esp32-to-go https://schnipsl.qgelm.de/doku.php?id=wallabag:esp32-to-go

Arduino und Arduino ESP32 Core. <p=>In Rahmen dieses Blogs dient die Arduino IDE in

Kombination mit dem Arduino Core für ESP32 als Werkzeug der Wahl. Sie ist kostenlos und
bietet ausreichende Funktionalität. Man könnte sie gewissermaßen als MVP
(Minimal Viable Produkt) bezeichnen. Aber keine Sorge! In späteren Folgen kommt auch noch

die Alternative Visual Studio Code zur Sprache.</p> <h3 class=,subheading”>Arduino IDE</h3>
<p>Um ESP32-Boards unter der Arduino IDE zu nutzen, müssen Entwickler zunächst eine
möglichst aktuelle Version der IDE für Windows, Linux, oder macOS herunterladen. Das
Installationspaket steht auf der <a href=,,https://www.arduino.cc/en/Main/Software” rel=,external
noopener” target=,_blank">Downloadseite von arduino.cc [2] zur
Verfügung. Auf die Installation gehe ich an dieser Stelle nicht weiter ein und verweise auf
frühere Postings. Dazu gibt es YouTube-Ressourcen <a
href=,https://www.youtube.com/watch?v=39yjdj1b9bs" rel=,external noopener”
target=,_blank”>wie die hier [3].</p> <figure class=,rteinlinebild akwa-
inline-img akwa-inline-img col-Ig-12 col-md-12 col-sm-12 col-xs-12“><img alt=, Arbeiten mit der
Arduino IDE“
src=,https://heise.cloudimg.io/width/840/950.png-lossy-50.webp-lossy-50.foill/ www-heise-de_/devel
oper/imgs/06/2/7/0/0/7/0/2/Screenshot _2019-06-25 21-06bedffff711e95f.png”
srcset=,,https://heise.cloudimg.io/width/1680/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/Screenshot _2019-06-25 21-06bedffff711e95f.png 2x“
class=,c1"/><figcaption class=,rteinlinebild_source akwa-caption”>Arbeiten mit der Arduino
IDE</figcaption></figure><p>Nach Installation der Arduino IDE ist folgende URL des
gewünschten ESP32-Boardmanagers in der Einstellungsseite (Windows: File | Preferences,
macOS: Arduino | Preferences) einzutragen:

https://dl.espressif.com/dl/package _esp32_index.json.</p> <figure class=,rteinlinebild
akwa-inline-img akwa-inline-img col-1g-12 col-md-12 col-sm-12 col-xs-12“><img alt=,ESP32 to go”“
src=,,https://heise.cloudimg.io/width/923/q50.png-lossy-50.webp-lossy-50.foill/ www-heise-de /devel
oper/imgs/06/2/7/0/0/7/0/2/arduinoesp32url-54388799b61497cc.png”
srcset=,,https://heise.cloudimg.io/width/1846/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/arduinoesp32url-54388799b61497cc.png 2x“
class=,cl"/></figure><p>Anschließend sollte man im Boardsmanager (Tools | Boards |
Boardsmanager) nach ,ESP32" suchen. Dort müsste das Paket ,,esp32 by Espressif Systems*
auftauchen, das sich mit Install installieren [ässt.</p> <figure class=,rteinlinebild akwa-inline-
img akwa-inline-img col-lg-12 col-md-12 col-sm-12 col-xs-12“><img alt=,ESP32 to go”
src=,https://heise.cloudimg.io/width/1180/g50.png-lossy-50.webp-lossy-50.foill/ www-heise-de /deve
loper/imgs/06/2/7/0/0/7/0/2/boardsmanager-63e74461d967a563.png”
srcset=,https://heise.cloudimg.io/width/2360/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/boardsmanager-63e74461d967a563.png_2x"
class=,cl"/></figure><p>Das war es auch schon. Besser gesagt fast. Die (chinesischen) ESP32-
Boards enthalten häufig einen UART-to-USB-Baustein von SiLabs. UART steht für
Universal Asynchronous Receiver Transmitter und dient der seriellen Kommunikation zwischen Host-

PC und Embedded Board über USB. Um am Windows-, Linux-, macOS-Computer mit dem Board

kommunizieren zu können, ist ein entsprechender Treiber notwendig. Den gibt es über
das Internet unter der URL <a

href=,https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers*
rel=,external noopener” target=,_blank”><SiLabs> [4]).</p> <h3
class=,subheading“>Von Mappings und anderen Schikanen</h3> <p>Um die verschiedenen Pins
eines ESP32-Boards mit symbolischem Namen innerhalb der Arduino IDE anzusprechen, existieren
sogenannte Mappings, bereitgestellt durch den Arduino Core. Dazu finden sich im
Installationsverzeichnis der IDE (Arduino | hardware | espressif | esp32 | variants | esp32)

entsprechende Deklarationen in pins_arduino.h. Wie aus dem folgenden Bild ersichtlich,
erweist sich ein solches Mapping als wichtig, um etwas Ordnung ins Namenschaos zu bringen.</p>

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:39

https://www.arduino.cc/en/Main/Software
https://www.youtube.com/watch?v=39yjdj1b9bs
https://heise.cloudimg.io/width/840/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/Screenshot_2019-06-25_21-06bedffff711e95f.png
https://heise.cloudimg.io/width/840/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/Screenshot_2019-06-25_21-06bedffff711e95f.png
https://heise.cloudimg.io/width/1680/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/Screenshot_2019-06-25_21-06bedffff711e95f.png
https://heise.cloudimg.io/width/1680/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/Screenshot_2019-06-25_21-06bedffff711e95f.png
https://dl.espressif.com/dl/package_esp32_index.json
https://heise.cloudimg.io/width/923/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/arduinoesp32url-54388799b61497cc.png
https://heise.cloudimg.io/width/923/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/arduinoesp32url-54388799b61497cc.png
https://heise.cloudimg.io/width/1846/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/arduinoesp32url-54388799b61497cc.png
https://heise.cloudimg.io/width/1846/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/arduinoesp32url-54388799b61497cc.png
https://heise.cloudimg.io/width/1180/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/boardsmanager-63e74461d967a563.png
https://heise.cloudimg.io/width/1180/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/boardsmanager-63e74461d967a563.png
https://heise.cloudimg.io/width/2360/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/boardsmanager-63e74461d967a563.png
https://heise.cloudimg.io/width/2360/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/boardsmanager-63e74461d967a563.png
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

2025/08/02 11:39 5/9 ESP32 to go

<figure class=,rteinlinebild akwa-inline-img akwa-inline-img col-1g-12 col-md-12 col-sm-12 col-
xs-12“><img alt=, Das Mapping der ESP32-Pins auf die Arduino IDE“
src=,https://heise.cloudimg.io/width/1186/q50.png-lossy-50.webp-lossy-50.foill/ www-heise-de_/deve
loper/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png*“

srcset=, https://heise.cloudimg.io/width/2372/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png 2x“
class=,cl"/><figcaption class=,rteinlinebild source akwa-caption“>Das Mapping der ESP32-Pins auf
die Arduino IDE (Bild: LastMinuteEngineers.com)</figcaption></figure><h3
class=,subheading“>Funktion der Tasten</h3> <p>Im Regelfall befinden sich zwei Tasten auf einem
ESP32-Board, eine EN-Taste und eine BOOT-Taste. Der ESP32 kennt zwei Betriebsmodi, Normalmodus
und Firmware-Update-Modus. Für das Einspielen neuer Software (eigenes Programm plus
Laufzeitumgebung/Firmware) müssen Entwickler das Board daher in den Uploadmodus

versetzen. Die EN-Taste sorgt lediglich für einen Restart. Stattdessen ist für den
Software-Upload folgendes Vorgehen notwendig:</p> <ol class=,rtelist rtelist-ordered“>BOO0OT-
Taste drücken und gedrückt halten EN-Taste betätigen und wieder

loslassen BOQOT-Taste loslassen <p>Achtung:</p> <ul
class=rtelist rtelist-unordered“>Dieses Vorgehen können einige Boards auch
automatisieren. Die Tasten haben auf unterschiedlichen Boards unterschiedliche Namen (z.
B. .RS" und ,0“, ,BOOT" und ,RST"). <figure class=,rteinlinebild akwa-inline-img akwa-
inline-img col-1g-12 col-md-12 col-sm-12 col-xs-12“><img alt=,Ein Board des Typs SparkFun ESP32
Thing mit Tasten &quot;RST&quot; und &quot;0&quot;*”
src=,https://heise.cloudimg.io/width/2000/950.png-lossy-50.webp-lossy-50.foill/ www-heise-de_/deve
loper/imgs/06/2/7/0/0/7/0/2/SparkFunESP32Thing-3b28729344492568.jpeg"
srcset=,,https://heise.cloudimg.io/width/4000/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/SparkFunESP32Thing-3b28729344492568.jpeg 2x“
class=,cl1"/><figcaption class=,rteinlinebild_source akwa-caption”>Ein Board des Typs SparkFun
ESP32 Thing mit Tasten ,,RST” und ,,0"</figcaption></figure><p>Sollte beim Kompilieren eines
Programms innerhalb der IDE zu einer Fehlermeldung mit roter Schrift kommen, genügt es
meist, die BOOT-Taste ein bisschen gedrückt zu halte, um sie anschließend wieder los zu

lassen.</p> <h3 class=,subheading”“>Das erste Mal</h3> <p>Nun erfolgt die erste Prüfung

des jungfr&+#228;ulichen ESP32-Boards. Die Arduino IDE soll einen ersten Einblick vermitteln, dass die
Programmierung exakt auf dieselbe Weise erfolgen kann wie bei Arduino-Boards.</p> <p>Sobald der

ESP32 am Hostcomputer angeschlossen ist, sucht man im Tools-Menü nach dem benutzten
Board und stellt es ein. Zudem gibt im Ports-Bereich den vom Board verwendeten seriellen (SLab-

)Port ein.</p> <p>Ich selbst nutze zum Experimentieren das ESP32 Smart Thing von SparkFun sowie
ein ESP32-Board von Watterott, besitze aber aus Preisgründen zahlreiche Boards des Typs
NodeMCU32 sowie Lolin32 aus chinesischer Produktion.</p> <figure class=,rteinlinebild akwa-inline-

img rtepos_left col-Ig-6 col-md-6 col-sm-6 col-xs-12 akwa-inline-left“><img alt=, ESP32-Boards gibt
es fast so viele wie Sand am Meer”
src=,,https://heise.cloudimg.io/width/2000/950.png-lossy-50.webp-lossy-50.foill/ www-heise-de_/deve
loper/imgs/06/2/7/0/0/7/0/2/NochmehrBoards-18f5304ce3f99213.jpeg”
srcset=,https://heise.cloudimg.io/width/4000/930.png-lossy-30.webp-lossy-30.foill/ www-heise-de /d
eveloper/imgs/06/2/7/0/0/7/0/2/NochmehrBoards-18f5304ce3f99213.jpeg_2x"
class=,c1"/><figcaption class=,rteinlinebild_source akwa-caption“>ESP32-Boards gibt es fast so
viele wie Sand am Meer</figcaption></figure><p>Um das ESP32-Board zum ersten Mal zu
programmieren, öffnet man in der Arduino IDE ein neues Projekt beziehungsweise einen neuem
Sketch und gibt nachfolgenden Code ein. Der Sketch geht davon aus, dass sich die eingebaute LED an
Pin 2 befindet. Sollte Entwickler ein anderes Board besitzen, lesen sie dessen Beschreibung und
definieren sie gegebenenfalls für die Konstante LED einen anderen Wert. Danach |ässt
man das Programm übersetzen und aufs Board übertragen. Nach dem Öffnen des
seriellen Monitors gibt man 115.200 Baud als Geschwindigkeit ein. Um den seriellen Monitor zu

Qgelm - https://schnipsl.qgelm.de/

https://heise.cloudimg.io/width/1186/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png
https://heise.cloudimg.io/width/1186/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png
https://heise.cloudimg.io/width/2372/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png
https://heise.cloudimg.io/width/2372/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/esp32-thing-graphical-datasheet-9cc57b3405382d8f.png
https://heise.cloudimg.io/width/2000/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/SparkFunESP32Thing-3b28729344492568.jpeg
https://heise.cloudimg.io/width/2000/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/SparkFunESP32Thing-3b28729344492568.jpeg
https://heise.cloudimg.io/width/4000/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/SparkFunESP32Thing-3b28729344492568.jpeg
https://heise.cloudimg.io/width/4000/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/SparkFunESP32Thing-3b28729344492568.jpeg
https://heise.cloudimg.io/width/2000/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/NochmehrBoards-18f5304ce3f99213.jpeg
https://heise.cloudimg.io/width/2000/q50.png-lossy-50.webp-lossy-50.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/NochmehrBoards-18f5304ce3f99213.jpeg
https://heise.cloudimg.io/width/4000/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/NochmehrBoards-18f5304ce3f99213.jpeg
https://heise.cloudimg.io/width/4000/q30.png-lossy-30.webp-lossy-30.foil1/_www-heise-de_/developer/imgs/06/2/7/0/0/7/0/2/NochmehrBoards-18f5304ce3f99213.jpeg

Last update: 2021/12/06 15:24 wallabag:esp32-to-go https://schnipsl.qgelm.de/doku.php?id=wallabag:esp32-to-go

öffnen, navigiert man über den Menüpfad Tools | Serial Monitor.</p> <p>)etzt
müsste sowohl die Onboard-LED im Einsekundentakt blinken als auch der Text “

Hallo, ESP32

” wiederholt auf dem seriellen Monitor erscheinen.</p> <pre
class=,rtetx-listing"“><code>const int LED = 5; Eingebaute blaue LED an Pin
5
 Setup - Iäuft nach jedem Reset genau einmal
void setup() {

 Digitaler Ausgang steuert die LED
 pinMode(LED,
OUTPUT);
 Serial.beqin(115200); Seriellen Port mit 115200 Baud
initialisieren
}

 Unendliche Ereignisschleife; HIGH &
LOW sind Spannungslevels!
void loop() {

Serial.printin(“:Hallo, ESP32”); Ausgabe an seriellen Monitor
senden
 digitalWrite(LED, HIGH); Es werde Licht

delay(1000); Wartezeit von einer Sekunde
 digitalWrite(LED, LOW);

 Licht aus
 delay(1000); Wartezeit von einer

Sekunde
}</code></pre> <p>Damit ist die Jungfernfahrt bereits erledigt. Wer experimentieren
will, könnte zum Beispiel an Pin 5 auch eine externe LED anschließen oder andere
Schikanen einbauen.</p> <h3 class=,subheading”“>Arbeitsteilung</h3> <p>Da der ESP32 eine
Mehrkernarchitektur aufweist, lassen sich echt parallele Threads beziehungsweise Tasks einsetzen.
Das folgende Programm nutzt diese Möglichkeit exemplarisch, um Tasks mittels
xTaskCreatePinnedToCore() zu erzeugen und sie an einen der beiden Kerne zu binden.
Der erste Task taskOne 1äuft auf dem ersten Kern 0 der zweite
taskTwo auf dem zweiten Kern 1. Beide Tasks haben Priorität 1 und erhalten
10.000 Bytes Stackgrö:ß:e.</p> <p>taskOne |ässt die eingebaute
LED jede halbe Sekunde blinken, während taskTwo jede halbe Sekunde Text am
seriellen Monitor ausgibt.</p> <pre class=,rtetx-listing“>TaskHandle_t taskl;
Jeder Task benö,tigt einen Handle
TaskHandle t task2;
 LED Pin
ist die eingebaute Pin
const int ledPIN = 5;
void setup()
{
 Serial.begin(115200);
 pinMode(ledPIN,
OUTPUT);

 task ausgeführt in
taskOne()
 auf dem ersten Core (Core 0), Prio: 1

xTaskCreatePinnedToCore(
 taskOne, /* Funktion mit Code des
Tasks */
 , TaskOne“, /* Name des Tasks */
 10000,
/* Stackgröße des Tasks */
 NULL, /* Parameter des
Tasks */
 1, /* Priorität des Tasks */
 &taskl,
/* Handle auf Task */
 0); /* Task soll auf Kern 1 laufen */

 delay(500);
 task ausgeführt in
taskTwo()
 auf dem zweiten Core (Core 1), Prio: 1

xTaskCreatePinnedToCore(
 taskTwo, /* Funktion mit Code des
Tasks */
 ,TaskTwo*, /* Name des Tasks */
 10000,
[* Stackgröße des Tasks */
 NULL, /* Parameter des Tasks
*/
 1, /* Priorität des Tasks */
 &task2, /*
Handle auf Task */
 1); /* Task soll auf Kern 2 laufen */

delay(500);
}
 taskOne: LED soll alle 2 Sekunden
blinken
void taskOne(void * optionalArgs){

for(;;){
 digitalWrite(ledPIN, HIGH),

delay(500),;
 digitalWrite(ledPIN, LOW),

delay(500);
 }
}
 taskTwo:
Ausgabe am seriellen Monitor alle 100 msec
void taskTwo(void * optionalArgs
){
 Serial.print(, Task 2 Iäuft auf Kern “);

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:39

2025/08/02 11:39 7/9 ESP32 to go

Serial.printin(xPortGetCorelD())
 for(;;){

Serial.printin(,LED an“);
 delay(500);

Serial.printin(,LED aus”);
 delay(500);

}
}
void loop() { /* braucht es nicht
*/ }
</pre> <p>Die Methode loop() bleibt
in diesem Fall ungenutzt, weil sich die Ereignisschleife ohnehin in den endlos laufenden Tasks
abspielt.</p> <p>Das Beispiel ist zwar lehrreich, aber etwas theoretisch. In der Praxis könnte
einer der Tasks die Kommunikation mit der Außenwelt übernehmen, während der
zweite Messwerte von Sensoren liest.</p> <h3 class=, subheading“>Let's talk</h3> <p>In jedem
Fall wäre es hilfreich, würden Tasks auch Information austauschen. Genau das
demonstriert das nachfolgende Beispiel. Mittels xQueueCreate legt das Hauptprogramm
eine Queue mit einem Slot des Datentyps unsigned long an. Das Kreieren der Tasks
bewerkstelligt diesmal die Methode xTaskCreate. Das Programm implementiert eine
simple Produzenten-Konsumenten-Konstellation.</p> <p>Der Aufruf von vTaskDelay ist
das ESP32-Pendant zu Arduinos delay, arbeitet aber mit höherer Auflösung,
weshalb wir die gewünschte Zeitdauer noch durch die Konstante
portTICK PERIOD MS teilen müssen. Die Konstante gibt an, wie viele Taktzyklen
pro Millisekunde durchgeführt werden.</p> <p>Um sicherzustellen, dass ein Wert in der
Queue vorhanden und ungelesen ist oder bereits ein neuer geschrieben werden kann, fragt der
Produzent queue auf Null ab, bevor er schreibt. Entsprechend prüft
der Konsument, ob tatsächlich ein Wert in der Queue vorliegt.</p> <pre
class=,rtetx-listing“>QueueHandle_t queue = NULL; Queue
anlegen
void setup()
{

printf(,Starte zwei Tasks und eine Queue /n /n“);
 queue =
XxQueueCreate(20,sizeof(unsigned long));
 if(queue !=

NULL) {
 printf(,,Queue kreiert \n“);

vTaskDelay(1000/portTICK_PERIOD_MS); Eine Sekunde warten

xTaskCreate(&produzent, ,produzent”,2048,NULL,5,NULL);

printf(,,Produzent gestartet \n");

xTaskCreate(&konsument, ,konsument”,2048,NULL,5,NULL);

printf(,Konsument gestarted \n"); Hier nutzen wir mal C/C++
 } else
{
 printf(,Queue konnte nicht angelegt werden
\n“):
 }
}
void
konsument(void *pvParameter)
{
 unsigned long

counter;
 if (queue == NULL){
 printf(,Queue nicht

bereit \n“);
 return;
 }

while(1){
 xQueueReceive(queue,&counter,(TickType_t
)(1000/portTICK_PERIOD_MS));
 printf(,Empfangener Wert über
Queue: %lu \n“,counter);

vTaskDelay(500/portTICK PERIOD _MS); halbe Sekunde warten

}
}
void produzent(void
*pvParameter){
 unsigned long counter=1;

if(queue == NULL){
 printf(,Queue nicht bereit

\n“);
 return;
 }

while(1){
 printf(,An Queue gesendeter Wert: %lu
\n“,counter);
 xQueueSend(queue,(void *)&counter,(TickType t)0);

 ... schreibt den wert von Counter in die Queue

counter++;
 vTaskDelay(500/portTICK_PERIOD MS); halbe
Sekunde warten
 }
}
void loop()
{}</pre> <h3 class=,subheading”“>Deep Sleep</h3> <p>Ein ESP32-Board braucht im
aktiven Zustand schon einige mA, im Schnitt etwa 150 bis 260 mA. Im aktiven Modus inklusive aller

Qgelm - https://schnipsl.qgelm.de/

Last update: 2021/12/06 15:24 wallabag:esp32-to-go https://schnipsl.qgelm.de/doku.php?id=wallabag:esp32-to-go

Komponenten wie WiFi und Bluetooth kö:nnen das sogar bis zu 800 mA bei Spitzenlasten sein.

Innerhalb von loT-Anwendungen kommt es aber durchaus häufig vor, dass Geräte mittels
Sensoren nur alle Minuten oder sogar Stunden kurzzeitige Messungen vornehmen, um sie

anschließend per Kommunikationsprotokoll nach außen zu übertragen. Es macht
also keinen Sinn, einen Embedded-Controller ständig aktiv arbeiten zu lassen. Bei einem

autonomen, batteriebetriebenen Gerä:t mü:sste man ansonsten alle paar Stunden die
Batterie ersetzen. Stellt man sich vor, dass das Gerä:t auf einem Baum in großer

Höhe angebracht ist, dürfte die praktische Dimension dieses Problems klar sein.</p>

<p>Deshalb unterstützt der ESP32 diverse Sparmodi. Beim Deep-Sleep-Modus sind nur noch
der RTC (Echtzeituhr) und der ULP-Koprozessor (ULP = Ultra Low Power) aktiv. Der benö:tigte

Reststrom beträ:gt in diesem Fall gerade einmal 2,5 micro Ampere. Damit 1ä:;sst sich qut
auskommen.</p> <p>Um vom Tiefschlaf zu erwachen, braucht der ESP32 keinen schö:nen

Prinzen, obwohl auch das möglich wäre. Es gibt drei Optionen: Betätigen eines
Touch-Pins, Ereignis an einem externen Pin (= Signalflanke) oder zeitgesteuertes Aufwecken mittels

des ULP-Koprozessors. Diesen letzteren Fall beleuchtet nachfolgendes Beispiel.</p>
<p>Allerdings fü:hrt der Tiefschlaf auch eine Art digitale Demenz nach sich, weil
die Daten (= Variablen) bis auf eine Ausnahme verloren gehen. Alle Daten, die mit dem
Schlüsselattribut RTC ATTR _DATA deklariert sind, bleiben erhalten. Immerhin
beherbergt dieser persistente Speicher rund viermal so viele Daten wie ein gewöhnlicher
Arduino Uno/Mega/Nano Speicher insgesamt mitbringt.</p> <p>Im folgenden Programm liegt die
Variable restarted im besagten Speicher. Sie zä:;hlt einfach mit, wie oft bereits ein
Neustart erfolgte. Beim ersten Start (restarted == 0) blinkt die eingebaute LED kurz. Sind schon
mehrere Restarts nach Tiefschafphasen erfolgt (restarted != 0), blinkt die LED

häufiger.</p> <p>Die Einleitung eines zeitgesteuerten Tiefschlafs beginnt mit dem Aufruf von
esp sleep enable_timer wakeup(TIME TO SLEEP * uS TO S FACTOR. Die Zeit in

Sekunden gibt TIME _TO_SLEEP wieder. Da intern die Berechnung in Microsekunden
erfolgt, muss der Umrechnungsfaktor uS TO S FACTOR noch dazu multipliziert werden.
Den eigentlichen Tiefschlaf leitet der folgende Aufruf ein:
esp_deep_sleep_start()<code>:</code></p> <pre
class= rtetx-listing“>#define uS_ TO_S FACTOR 1000000 Microsekunden =>
o0
Sekunden
#define TIME TO_SLEEP 3 Schlaflänge in Sekunden =~

RTC_DATA ATTR int restartet = 0;
#define LEDPIN 2
 eingebaute LED
#define BLINK_DELAY 200 Blinkfrequenz = 200
/ BLINK_DELAY
void setup() {

Serial.begin(115200);
 Serial.printin(“Deep Sleep mittels Timer -
Demo”);
 pinMode(LEDPIN,OUTPUT); LED

 delay(500); a bisserl Geduld

 if(restartet == 0)
 das erste Mal
 {
 Serial.printin(“Initialer
Start”),
 digitalWrite(LEDPIN, HIGH); Licht
an
 delay(10 * BLINK_DELAY);
 digitalWrite(LEDPIN, LOW);
 Spot aus
 restartet++,;
 } else nicht
mehr jungfräulich
 {
 Serial.printin(“Schon ein
paar Mal aus Schlaf erwacht: “ + String(restartet)));

blinken(restartet);
 }

 In Tiefschlaf versetzen
 Serial.print(“,Tiefschlaf wird initiiert für
“ + String(TIME _TO_SLEEP));
 Serial.printin(“
Sekunden”);
 esp_sleep_enable _timer wakeup(TIME TO_SLEEP *
uS TO_S FACTOR),;
 esp_deep_sleep start(); Schlaf
beginnt
}
void blinken(byte n) { n mal Blinken im

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:39

2025/08/02 11:39 9/9 ESP32 to go

BLINK_DELAY msec Abstand
 Serial.printin(“,Blinken
startet”);
 for (i = 0; i &It; n; i++) {

Serial.printin(“LED an”),;
 digitalWrite(LEDPIN,

HIGH),;
 delay(BLINK_DELAY);

Serial.printin(“LED aus”),
 digitalWrite(LEDPIN,

LOW),
 }
}
void loop()
{
 Serial.printIn(“Unerreichter
Code”),
} </pre> <p>Da das Programm den Tiefschlaf in
setup() durchführt, kommt es in diesem Beispiel natürlich nie zur
Ausführung der Methode loop()<code>.</code></p> <h3
class=,subheading“>Fazit</h3> <p>Nun sind wir am Ende dieses Beitrags angekommen, womit die
Basis für eigene Experimente gelegt wäre. Dabei lag der Fokus auf die inneren Werte des
ESP32. Wir haben die funktionale Architektur beleuchtet, einige besondere Aspekte wie
Parallelisierung und Tiefschlaf betrachtet und dazu Beispiele kennen gelernt. Im Mittelpunkt der
Programmierung stand dabei die Arduino IDE.</p> <p>Beim nächsten Beitrag kommt die
Interaktion des ESP32 mit der Außenwelt zur Sprache. Themen sind dann insbesondere die
WiFi-Funktionalität des Microcontrollers.</p> <p>Bis dahin viel Spaß beim
Experimentieren!</p> <hr/><p>URL dieses
Artikels:
<small><code>http://www.heise.de/-4452689 </code></small></p>
<p>Links in diesem
Artikel:
<small><code>[1] http://esp32.net</code></sma
lI>
<small><code>[2] https://www.arduino.cc/en/Main/Software</co
de></small>
<small><code>[3] https://www.youtube.com/watch?v
=39yjdj1b9bs</code></small>
<small><code>[4] https://www.sila
bs.com/products/development-tools/software/usb-to-uart-bridge-vcp-
drivers</code></small>
</p> <p class=,printversion__copyright“>Copyright ©
2019 Heise Medien</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:esp32-to-go

Last update: 2021/12/06 15:24

Qgelm - https://schnipsl.qgelm.de/

http://www.heise.de/-4452689
http://esp32.net
https://www.arduino.cc/en/Main/Software
https://www.youtube.com/watch?v=39yjdj1b9bs
https://www.youtube.com/watch?v=39yjdj1b9bs
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:esp32-to-go

	[ESP32 to go]
	ESP32 to go

