
2025/09/17 15:01 1/13 Introduction | CircuitPython 2FA TOTP Authentication Friend

Qgelm - https://schnipsl.qgelm.de/

Introduction | CircuitPython 2FA TOTP Authentication Friend

Originalartikel

Backup

<html> <div class=„page-content all-page-view-content“ readability=„54“> <div class=„row-fluid
build-image“><img class=„49760-asset img-
responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium260/hacks_pyotp.jpg?1514
695004 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium640/hacks_pyotp.jpg?1514695004
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium800/hacks_pyotp.jpg?1514695004
800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/760/large1024/hacks_pyotp.jpg?1514695004
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium800/hacks_pyotp.jpg?1514695
004“ alt=„hacks_pyotp.jpg“/></div> <div class=„row-fluid build-text“ readability=„50“>
<p>Having 2 Factor Authentication on all your accounts is a good way to keep your data more
secure. With 2FA logins, not only is a username and password needed, but also a one-time-use code.
There's a few different ways to get that code, such as by email, phone or SMS. But my favorite way is
to do it is via a 'Google Authenticator' time-based OTP (one
time password), also known as a
TOTP.</p> <p>Using an app on your phone like Authy or Authenticator, you set
up a secret given to you by the service, then every 30 seconds, a new code is generated for you.
What's extra nice is that the Google Authenticator protocol is supported by just about
every service and phone/tablet</p> </div> <div class=„row-fluid build-text“
readability=„35“> <p>I don't own a phone! So I have to ask Mr. Ladyada for an
authenticator code. Or I can use my tablet, but it's not always at my desk. And I don't want to buy a
phone just for using 2FA!</p> </div> <div class=„row-fluid build-text“ readability=„46“>
<p>Luckily for us, the Google Authenticator protocol is really simple - You just need to be able to
know the current time, and run a SHA1 hash.</p> <p>I decided to build a simple device that all it
does is generate TOTP's for me, using CircuitPython - my favorite programming language! It uses a
Feather ESP8266 which has WiFi so it can connect to NTP to get the current time
on startup, and a Feather OLED to display text nice and clearly.</p> <p>Every
time I need a new code, I just click the reset button and within 2 seconds I've got my 3 most common
TOTP's on hand (yes its that fast!)</p> </div> <div class=„build-faq“ readability=„5“> <h2
class=„question“> THIS IS NOT A QUESTION MORE OF A COMMENT. YOU ARE PROGRAMMING THE
TOTP SECRET INTO THE FLASH OF THE MICROCONTROLLER AND ITS NOT ENCRYPTED OR PROTECTED
AT ALL ANYONE COULD BREAK INTO YOUR APARTMENT, GO TO YOUR BEDROOM, LOOK ON YOUR
DESK, FIND THIS AND THEN CONNECT IT UP TO THEIR HACKER LAPTOP TO GRAB YOUR SECRET KEY
THEN IF THEY HAD YOUR USERNAME AND PASSWORD THEY WOULD BE ABLE TO LOG IN AS YOU AND
THIS IS REALLY INSECURE ITS SO IRRESPONSIBLE TO CONSIDER PUBLISHING A PROJECT LIKE THIS BY
THE WAY DID YOU SEE THAT SNOWDEN APP? MAYBE YOU CAN RUN THAT ON A PHONE SO YOU CAN
WATCH YOUR DESK REMOTELY AND MAKE SURE NOBODY BROKE IN TO STEAL YOUR FEATHER? OH
WAIT YOU JUST SAID YOU DON'T HAVE A PHONE. OK I DONT KNOW WHAT MY QUESTION IS</h2> <div
class=„answer“ readability=„6“> <p>This project is probably not for you</p> </div> </div>
</div><div class=„page-content all-page-view-content“ readability=„33“> <div class=„row-fluid

https://learn.adafruit.com/circuitpython-totp-otp-2fa-authy-authenticator-friend?view=all
https://www.qgelm.de/wb2html/wb272.html
https://learn.adafruit.com/assets/49760
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium260/hacks_pyotp.jpg?1514695004
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium260/hacks_pyotp.jpg?1514695004
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium640/hacks_pyotp.jpg?1514695004
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium800/hacks_pyotp.jpg?1514695004
https://cdn-learn.adafruit.com/assets/assets/000/049/760/large1024/hacks_pyotp.jpg?1514695004
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium800/hacks_pyotp.jpg?1514695004
https://cdn-learn.adafruit.com/assets/assets/000/049/760/medium800/hacks_pyotp.jpg?1514695004

Last
update:
2021/12/06
15:24

wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

https://schnipsl.qgelm.de/ Printed on 2025/09/17 15:01

build-text“ readability=„35“> <p>Easy! You only need two parts - a Feather
Huzzah and an OLED FeatherWing</p> <p>Your purchases from
the Adafruit shop help support us writing up these awesome guides, libraries and CircuitPython
development and are appreciated!!!
</p> </div> <div class=„product-element“ data-
product-id=„2821“> <div class=„product-image col-xs-5“><img class=„img-responsive“
src=„https://cdn-learn.adafruit.com/products/images/000/002/821/medium310/2821-07.jpg?1515046
489“ alt=„Adafruit Feather HUZZAH with ESP8266 WiFi“/></div> <div class=„product-details-
wrapper col-xs-7“ readability=„13“> <div class=„product-details col-xs-12“ readability=„18“> <h3
class=„product-title“>Adafruit Feather HUZZAH
with ESP8266 WiFi</h3> <p>PRODUCT ID: 2821</p> <p>Feather is the new development
board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be
a new standard for portable microcontroller cores….</p> </div> <div class=„product-buy-wrapper
col-xs-12“> <p><a id=„2821-product“ class=„product-buy btn parts-url“ data-pid=„2821“ data-
qty=„1“ data-name=„Adafruit Feather HUZZAH with ESP8266 WiFi“
href=„https://www.adafruit.com/product/2821“>Add to Cart</p> <div class=„product-price-
wrapper col-xs-5“> <p>$16.95</p> <p>IN STOCK</p> </div> </div> </div> </div> <div
class=„product-element has-sibling-product“ data-product-id=„2900“> <div class=„product-image
col-xs-5“><img class=„img-responsive“
src=„https://cdn-learn.adafruit.com/products/images/000/002/900/medium310/2900-10.jpg?1515046
522“ alt=„FeatherWing OLED - 128×32 OLED Add-on For All Feather Boards“/></div> <div
class=„product-details-wrapper col-xs-7“ readability=„10“> <div class=„product-details col-xs-12“
readability=„12“> <h3 class=„product-title“>FeatherWing OLED - 128×32 OLED Add-on For All
Feather Boards</h3> <p>PRODUCT ID: 2900</p> <p>A Feather board without ambition is a
Feather board without FeatherWings! This is the FeatherWing OLED : it adds a 128×32 monochrome
OLED plus 3 user buttons to any Feather main board….</p> </div> <div class=„product-buy-
wrapper col-xs-12“> <p><a id=„2900-product“ class=„product-buy btn parts-url“ data-pid=„2900“
data-qty=„1“ data-name=„FeatherWing OLED - 128×32 OLED Add-on For All Feather Boards“
href=„https://www.adafruit.com/product/2900“>Add to Cart</p> <div class=„product-price-
wrapper col-xs-5“> <p>$14.95</p> <p>IN STOCK</p> </div> </div> </div> </div> <div
class=„row-fluid build-text“ readability=„22“> <p>If you happen to be an AdaBox subscriber (what? you should be!) You can
find these parts in your Adabox 003 kit!</p> </div> <div class=„product-
element“ data-product-id=„3268“> <div class=„product-image col-xs-5“><img class=„img-responsive“
src=„https://cdn-learn.adafruit.com/products/images/000/003/268/medium310/3268-00.jpg?1515046
721“ alt=„AdaBox003 – The World of IoT – Curated by Digi-Key“/></div> <div
class=„product-details-wrapper col-xs-7“ readability=„10“> <div class=„product-details col-xs-12“
readability=„12“> <h3 class=„product-title“>AdaBox003 – The World of IoT –
Curated by Digi-Key</h3> <p>PRODUCT ID: 3268</p> <p>AdaBox003 – The
World of IoT (Curated by Digi-Key) is the perfect gift for folks who are just getting started in the world
of DIY electronics. It's an…</p> </div> <div class=„product-buy-wrapper col-xs-12“> <p><a
id=„3268-product“ class=„product-buy btn parts-url“ data-pid=„3268“ data-qty=„1“ data-
name=„AdaBox003 – The World of IoT – Curated by Digi-Key“
href=„https://www.adafruit.com/product/3268“>Add to Cart</p> <div class=„product-price-
wrapper col-xs-5“> <p>$79.95</p> <p>IN STOCK</p> </div> </div> </div> </div> <table
class=„build-table“ readability=„4“><tr class=„build-row“ readability=„8“><td class=„side-
images“> </td> <td class=„side-text“ readability=„31“> <div class=„text“ readability=„37“>

https://www.adafruit.com/product/2821
https://cdn-learn.adafruit.com/products/images/000/002/821/medium310/2821-07.jpg?1515046489
https://cdn-learn.adafruit.com/products/images/000/002/821/medium310/2821-07.jpg?1515046489
https://www.adafruit.com/product/2821
https://www.adafruit.com/product/2821
https://www.adafruit.com/product/2900
https://cdn-learn.adafruit.com/products/images/000/002/900/medium310/2900-10.jpg?1515046522
https://cdn-learn.adafruit.com/products/images/000/002/900/medium310/2900-10.jpg?1515046522
https://www.adafruit.com/product/2900
https://www.adafruit.com/product/2900
https://www.adafruit.com/adabox
https://www.adafruit.com/product/3268
https://cdn-learn.adafruit.com/products/images/000/003/268/medium310/3268-00.jpg?1515046721
https://cdn-learn.adafruit.com/products/images/000/003/268/medium310/3268-00.jpg?1515046721
https://www.adafruit.com/product/3268
https://www.adafruit.com/product/3268

2025/09/17 15:01 3/13 Introduction | CircuitPython 2FA TOTP Authentication Friend

Qgelm - https://schnipsl.qgelm.de/

<p>While I started on a breadboard, I ended up making a cute little sandwich without socket headers
at all by connecting the OLED directly to the Feather HUZZAH</p> <p>If you press the OLED headers
against a table you can use a little solder to wick into each hole and have a perfectly flat bottom side.
That will keep it from scratching your desk!</p> </div> </td> </tr></table></div><div
class=„page-content all-page-view-content“ readability=„136“> <div class=„row-fluid build-text“
readability=„15“> <p>Follow our handy getting-started guide on CircuitPython and especially the ESP8266
installation page/guide to learn how to install CircuitPython on your ESP8266 Feather</p>
</div> <div class=„row-fluid build-text“ readability=„32“> <p>Flash the latest version of
CircuitPython (you'll need v 2.2 or higher) and continue to the next step!</p> </div> <div
class=„row-fluid build-image“><img
class=„49751-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium260/hacks_flash.png?1514
688114 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium640/hacks_flash.png?1514688114
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium800/hacks_flash.png?1514688114
800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/751/large1024/hacks_flash.png?1514688114
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium800/hacks_flash.png?1514688
114“ alt=„hacks_flash.png“/></div> <div class=„row-fluid build-text“ readability=„38“>
<p>We're using the ESP8266 Feather which means it has lots of memory and Internet capability. We
use the Internet part to get the current time. However, this Feather is not as easy to use as the SAMD
series, as it does not show up as a disk drive!</p> <p>You'll need to use
ampy to install the circuitpython scripts!</p> </div> <p><a
href=„https://learn.adafruit.com/micropython-basics-load-files-and-run-code/“ class=„btn btn-large
btn-block btn-primary“ target=„_self“ type=„button“>Install and learn how to use ampy</p>
<div class=„row-fluid build-text“ readability=„33“> <p>Once you've gotten ampy working save the
following to your computer as boot.py and upload it so that you don't have to turn
off the os debug output via REPL anymore</p> </div> <div class=„build-code code-element“
readability=„7“> <pre class=„code-text-only c4“> import esp esp.osdebug(None) </pre> <pre
class=„prettyprint linenums“> import esp esp.osdebug(None) </pre></div> <div class=„row-fluid
build-image“><img class=„49752-asset img-
responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium260/hacks_bootpy.png?151
4691741 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium640/hacks_bootpy.png?1514691741
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium800/hacks_bootpy.png?1514691741
800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/752/large1024/hacks_bootpy.png?1514691741
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium800/hacks_bootpy.png?15146
91741“ alt=„hacks_bootpy.png“/></div> <div class=„row-fluid build-text“ readability=„32“>
<p>You'll need a bunch of libraries to get the OLED working. Use ampy to create a directory called
lib</p> <p>Then download the
latest library bundle</p> <p>You'll need to upload adafruit_ssd1306.mpy,

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/assets/49751
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium260/hacks_flash.png?1514688114
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium260/hacks_flash.png?1514688114
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium640/hacks_flash.png?1514688114
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium800/hacks_flash.png?1514688114
https://cdn-learn.adafruit.com/assets/assets/000/049/751/large1024/hacks_flash.png?1514688114
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium800/hacks_flash.png?1514688114
https://cdn-learn.adafruit.com/assets/assets/000/049/751/medium800/hacks_flash.png?1514688114
https://learn.adafruit.com/micropython-basics-load-files-and-run-code/
https://learn.adafruit.com/assets/49752
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium260/hacks_bootpy.png?1514691741
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium260/hacks_bootpy.png?1514691741
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium640/hacks_bootpy.png?1514691741
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium800/hacks_bootpy.png?1514691741
https://cdn-learn.adafruit.com/assets/assets/000/049/752/large1024/hacks_bootpy.png?1514691741
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium800/hacks_bootpy.png?1514691741
https://cdn-learn.adafruit.com/assets/assets/000/049/752/medium800/hacks_bootpy.png?1514691741
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Last
update:
2021/12/06
15:24

wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

https://schnipsl.qgelm.de/ Printed on 2025/09/17 15:01

and the adafruit_bus_device
and adafruit_register folders to the lib folder.
Then check with ampy's

ls

command to verify all your files are in place!</p> </div> <div class=„row-fluid build-
image“><img class=„49753-asset img-
responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium260/hacks_libs.png?151469
2155 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium640/hacks_libs.png?1514692155
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium800/hacks_libs.png?1514692155
800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/753/large1024/hacks_libs.png?1514692155
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium800/hacks_libs.png?15146921
55“ alt=„hacks_libs.png“/></div> <div class=„row-fluid build-text“ readability=„32“> <p>Now
you can download the following script to your computer and save it as
main.py</p> <p>Don't upload it via ampy yet! The current file has fake
tokens in it that need to be set!
</p> </div> <div class=„build-code code-element“
readability=„127“> <pre class=„code-text-only c4“> import time import machine import network
import ntptime import uhashlib import ubinascii import board import bitbangio as io import
adafruit_ssd1306 totp = [(„Discord “, 'JBSWY3DPEHPK3PXP'), # https://github.com/pyotp/pyotp
exmple

 ("Gmail ", 'abcdefghijklmnopqrstuvwxyz234567'),
 ("Accounts", 'asfdkwefoaiwejfa323nfjkl')]

ssid = 'my_wifi_ssid' password = 'my_wifi_password' TEST = False # if you want to print out the tests
the hashers ALWAYS_ON = False # Set to true if you never want to go to sleep! ON_SECONDS = 60 #
how long to stay on if not in always_on mode i2c = io.I2C(board.SCL, board.SDA) oled =
adafruit_ssd1306.SSD1306_I2C(128, 32, i2c) # Gimme a welcome screen! oled.fill(0)
oled.text('CircuitPython', 0, 0) oled.text('PyTOTP Pal!', 0, 10) oled.text(' <3 adafruit <3 ', 0, 20)
oled.show() time.sleep(0.25)

EPOCH_DELTA = 946684800 # seconds between year 2000 and year 1970 SECS_DAY = 86400 SHA1
= uhashlib.sha1 if TEST:

 print("===")
 print("SHA1 test: ", ubinascii.hexlify(SHA1(b'hello world').digest()))
 # should be 2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

HMAC implementation, as hashlib/hmac wouldn't fit # From
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code def HMAC(k, m):

 SHA1_BLOCK_SIZE = 64
 KEY_BLOCK = k + (b'\0' * (SHA1_BLOCK_SIZE - len(k)))

https://learn.adafruit.com/assets/49753
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium260/hacks_libs.png?1514692155
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium260/hacks_libs.png?1514692155
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium640/hacks_libs.png?1514692155
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium800/hacks_libs.png?1514692155
https://cdn-learn.adafruit.com/assets/assets/000/049/753/large1024/hacks_libs.png?1514692155
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium800/hacks_libs.png?1514692155
https://cdn-learn.adafruit.com/assets/assets/000/049/753/medium800/hacks_libs.png?1514692155
https://github.com/pyotp/pyotp
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

2025/09/17 15:01 5/13 Introduction | CircuitPython 2FA TOTP Authentication Friend

Qgelm - https://schnipsl.qgelm.de/

 KEY_INNER = bytes((x ^ 0x36) for x in KEY_BLOCK)
 KEY_OUTER = bytes((x ^ 0x5C) for x in KEY_BLOCK)
 inner_message = KEY_INNER + m
 outer_message = KEY_OUTER + SHA1(inner_message).digest()
 return SHA1(outer_message)

if TEST:

 KEY = b'abcd'
 MESSAGE = b'efgh'
 print("===")
 print("HMAC test: ", ubinascii.hexlify(HMAC(KEY, MESSAGE).digest()))
 # should be e5dbcf9263188f9fce90df572afeb39b66b27198

Base32 decoder, since base64 lib wouldnt fit def base32_decode(encoded):

 missing_padding = len(encoded) % 8
 if missing_padding != 0:
 encoded += '=' * (8 - missing_padding)
 encoded = encoded.upper()
 chunks = [encoded[i:i+8] for i in range(0, len(encoded), 8)]
 out = []
 for chunk in chunks:
 bits = 0
 bitbuff = 0
 for c in chunk:
 if 'A' <= c <= 'Z':
 n = ord(c) - ord('A')
 elif '2' <= c <= '7':
 n = ord(c) - ord('2') + 26
 elif n == '=':
 continue
 else:
 raise ValueError("Not base32")
 # 5 bits per 8 chars of base32
 bits += 5
 # shift down and add the current value
 bitbuff <<= 5
 bitbuff |= n
 # great! we have enough to extract a byte
 if bits >= 8:
 bits -= 8
 byte = bitbuff >> bits # grab top 8 bits
 bitbuff &= ~(0xFF << bits) # and clear them
 out.append(byte) # store what we got
 return out

if TEST:

 print("===")
 print("Base32 test: ", bytes(base32_decode("IFSGCZTSOVUXIIJB")))

Last
update:
2021/12/06
15:24

wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

https://schnipsl.qgelm.de/ Printed on 2025/09/17 15:01

 # should be "Adafruit!!"

Turns an integer into a padded-with-0x0 bytestr def int_to_bytestring(i, padding=8):

 result = []
 while i != 0:
 result.insert(0, i & 0xFF)
 i >>= 8
 result = [0] * (padding - len(result)) + result
 return bytes(result)

HMAC -> OTP generator, pretty much same as
https://github.com/pyotp/pyotp/blob/master/src/pyotp/otp.py def generate_otp(input, secret,
digits=6):

 if input < 0:
 raise ValueError('input must be positive integer')
 hmac_hash = bytearray(HMAC(bytes(base32_decode(secret)),
int_to_bytestring(input)).digest())
 offset = hmac_hash[-1] & 0xf
 code = ((hmac_hash[offset] & 0x7f) << 24 |
 (hmac_hash[offset + 1] & 0xff) << 16 |
 (hmac_hash[offset + 2] & 0xff) << 8 |
 (hmac_hash[offset + 3] & 0xff))
 str_code = str(code % 10 ** digits)
 while len(str_code) < digits:
 str_code = '0' + str_code
 return str_code

print(„===“) # Set up networking
sta_if = network.WLAN(network.STA_IF) oled.fill(0) oled.text('Connecting to', 0, 0) oled.text(ssid, 0,
10) oled.show() if not sta_if.isconnected():

 print("Connecting to SSID", ssid)
 sta_if.active(True)
 sta_if.connect(ssid, password)
 while not sta_if.isconnected():
 pass

print(„Connected! IP = “, sta_if.ifconfig()[0]) # Done! Let them know we made it oled.text(„IP: “ +
sta_if.ifconfig()[0], 0, 20) oled.show() time.sleep(0.25) # Get the latest time from NTP t = None while
not t:

 try:
 t = ntptime.time()
 except:
 pass
 time.sleep(0.1)

https://github.com/pyotp/pyotp/blob/master/src/pyotp/otp.py

2025/09/17 15:01 7/13 Introduction | CircuitPython 2FA TOTP Authentication Friend

Qgelm - https://schnipsl.qgelm.de/

NTP time is seconds-since-2000 print(„NTP time: “, t) # But we need Unix time, which is seconds-
since-1970 t += EPOCH_DELTA print(„Unix time: “, t) # Instead of using RTC which means converting
back and forth # we'll just keep track of seconds-elapsed-since-NTP-call mono_time =
int(time.monotonic()) print(„Monotonic time“, mono_time) countdown = ON_SECONDS # how long to
stay on if not in always_on mode while ALWAYS_ON or (countdown > 0):

 # Calculate current time based on NTP + monotonic
 unix_time = t - mono_time + int(time.monotonic())
 print("Unix time: ", unix_time)
 # Clear the screen
 oled.fill(0)
 y = 0
 # We can do up to 3 per line on the Feather OLED
 for name,secret in totp:
 otp = generate_otp(unix_time//30, secret)
 print(name + " OTP output: ", otp) # serial debugging output
 oled.text(name + ": "+ str(otp), 0, y) # display name & OTP on
OLED
 y += 10 # Go to next line on OLED
 # We'll display a little bar that 'counts down' how many seconds you have
left
 oled.framebuf.line(0,31, 128 - (unix_time % 30)*4,31, True)
 oled.show()
 # We'll update every 1/4 second, we can hash very fast so its no biggie!
 countdown -= 0.25
 time.sleep(0.25)

All these hashes will be lost in time(), like tears in rain. Time to die oled.fill(0) oled.show() </pre>
<pre class=„prettyprint linenums“> import time import machine import network import ntptime
import uhashlib import ubinascii import board import bitbangio as io import adafruit_ssd1306 totp =
[(„Discord “, 'JBSWY3DPEHPK3PXP'), # https://github.com/pyotp/pyotp exmple

 ("Gmail ", 'abcdefghijklmnopqrstuvwxyz234567'),
 ("Accounts", 'asfdkwefoaiwejfa323nfjkl')]

ssid = 'my_wifi_ssid' password = 'my_wifi_password' TEST = False # if you want to print out the tests
the hashers ALWAYS_ON = False # Set to true if you never want to go to sleep! ON_SECONDS = 60 #
how long to stay on if not in always_on mode i2c = io.I2C(board.SCL, board.SDA) oled =
adafruit_ssd1306.SSD1306_I2C(128, 32, i2c) # Gimme a welcome screen! oled.fill(0)
oled.text('CircuitPython', 0, 0) oled.text('PyTOTP Pal!', 0, 10) oled.text(' <3 adafruit <3 ', 0, 20)
oled.show() time.sleep(0.25)

EPOCH_DELTA = 946684800 # seconds between year 2000 and year 1970 SECS_DAY = 86400 SHA1
= uhashlib.sha1 if TEST:

 print("===")
 print("SHA1 test: ", ubinascii.hexlify(SHA1(b'hello world').digest()))
 # should be 2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

HMAC implementation, as hashlib/hmac wouldn't fit # From
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code def HMAC(k, m):

https://github.com/pyotp/pyotp
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

Last
update:
2021/12/06
15:24

wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

https://schnipsl.qgelm.de/ Printed on 2025/09/17 15:01

 SHA1_BLOCK_SIZE = 64
 KEY_BLOCK = k + (b'\0' * (SHA1_BLOCK_SIZE - len(k)))
 KEY_INNER = bytes((x ^ 0x36) for x in KEY_BLOCK)
 KEY_OUTER = bytes((x ^ 0x5C) for x in KEY_BLOCK)
 inner_message = KEY_INNER + m
 outer_message = KEY_OUTER + SHA1(inner_message).digest()
 return SHA1(outer_message)

if TEST:

 KEY = b'abcd'
 MESSAGE = b'efgh'
 print("===")
 print("HMAC test: ", ubinascii.hexlify(HMAC(KEY, MESSAGE).digest()))
 # should be e5dbcf9263188f9fce90df572afeb39b66b27198

Base32 decoder, since base64 lib wouldnt fit def base32_decode(encoded):

 missing_padding = len(encoded) % 8
 if missing_padding != 0:
 encoded += '=' * (8 - missing_padding)
 encoded = encoded.upper()
 chunks = [encoded[i:i+8] for i in range(0, len(encoded), 8)]
 out = []
 for chunk in chunks:
 bits = 0
 bitbuff = 0
 for c in chunk:
 if 'A' <= c <= 'Z':
 n = ord(c) - ord('A')
 elif '2' <= c <= '7':
 n = ord(c) - ord('2') + 26
 elif n == '=':
 continue
 else:
 raise ValueError("Not base32")
 # 5 bits per 8 chars of base32
 bits += 5
 # shift down and add the current value
 bitbuff <<= 5
 bitbuff |= n
 # great! we have enough to extract a byte
 if bits >= 8:
 bits -= 8
 byte = bitbuff >> bits # grab top 8 bits
 bitbuff &= ~(0xFF << bits) # and clear them
 out.append(byte) # store what we got
 return out

2025/09/17 15:01 9/13 Introduction | CircuitPython 2FA TOTP Authentication Friend

Qgelm - https://schnipsl.qgelm.de/

if TEST:

 print("===")
 print("Base32 test: ", bytes(base32_decode("IFSGCZTSOVUXIIJB")))
 # should be "Adafruit!!"

Turns an integer into a padded-with-0x0 bytestr def int_to_bytestring(i, padding=8):

 result = []
 while i != 0:
 result.insert(0, i & 0xFF)
 i >>= 8
 result = [0] * (padding - len(result)) + result
 return bytes(result)

HMAC -> OTP generator, pretty much same as
https://github.com/pyotp/pyotp/blob/master/src/pyotp/otp.py def generate_otp(input, secret,
digits=6):

 if input < 0:
 raise ValueError('input must be positive integer')
 hmac_hash = bytearray(HMAC(bytes(base32_decode(secret)),
int_to_bytestring(input)).digest())
 offset = hmac_hash[-1] & 0xf
 code = ((hmac_hash[offset] & 0x7f) << 24 |
 (hmac_hash[offset + 1] & 0xff) << 16 |
 (hmac_hash[offset + 2] & 0xff) << 8 |
 (hmac_hash[offset + 3] & 0xff))
 str_code = str(code % 10 ** digits)
 while len(str_code) < digits:
 str_code = '0' + str_code
 return str_code

print(„===“) # Set up networking
sta_if = network.WLAN(network.STA_IF) oled.fill(0) oled.text('Connecting to', 0, 0) oled.text(ssid, 0,
10) oled.show() if not sta_if.isconnected():

 print("Connecting to SSID", ssid)
 sta_if.active(True)
 sta_if.connect(ssid, password)
 while not sta_if.isconnected():
 pass

print(„Connected! IP = “, sta_if.ifconfig()[0]) # Done! Let them know we made it oled.text(„IP: “ +
sta_if.ifconfig()[0], 0, 20) oled.show() time.sleep(0.25) # Get the latest time from NTP t = None while
not t:

 try:
 t = ntptime.time()
 except:

https://github.com/pyotp/pyotp/blob/master/src/pyotp/otp.py

Last
update:
2021/12/06
15:24

wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

https://schnipsl.qgelm.de/ Printed on 2025/09/17 15:01

 pass
 time.sleep(0.1)

NTP time is seconds-since-2000 print(„NTP time: “, t) # But we need Unix time, which is seconds-
since-1970 t += EPOCH_DELTA print(„Unix time: “, t) # Instead of using RTC which means converting
back and forth # we'll just keep track of seconds-elapsed-since-NTP-call mono_time =
int(time.monotonic()) print(„Monotonic time“, mono_time) countdown = ON_SECONDS # how long to
stay on if not in always_on mode while ALWAYS_ON or (countdown > 0):

 # Calculate current time based on NTP + monotonic
 unix_time = t - mono_time + int(time.monotonic())
 print("Unix time: ", unix_time)
 # Clear the screen
 oled.fill(0)
 y = 0
 # We can do up to 3 per line on the Feather OLED
 for name,secret in totp:
 otp = generate_otp(unix_time//30, secret)
 print(name + " OTP output: ", otp) # serial debugging output
 oled.text(name + ": "+ str(otp), 0, y) # display name & OTP on
OLED
 y += 10 # Go to next line on OLED
 # We'll display a little bar that 'counts down' how many seconds you have
left
 oled.framebuf.line(0,31, 128 - (unix_time % 30)*4,31, True)
 oled.show()
 # We'll update every 1/4 second, we can hash very fast so its no biggie!
 countdown -= 0.25
 time.sleep(0.25)

All these hashes will be lost in time(), like tears in rain. Time to die oled.fill(0) oled.show()
</pre></div> <div class=„row-fluid build-text“ readability=„32“> <p>Before uploading, change
these two lines to your network SSID and password</p> </div> <div class=„build-code code-
element“ readability=„7“> <pre class=„code-text-only c4“> ssid = 'my_wifi_ssid' password =
'my_wifi_password' </pre> <pre class=„prettyprint linenums“> ssid = 'my_wifi_ssid' password =
'my_wifi_password' </pre></div> <div class=„row-fluid build-text“ readability=„34“> <p>You'll also
need to get 2 factor „authenticator tokens/secrets“. Each site is a little different about how it does
this.</p> <p>For example, when you set up GMail for 2FA it will show you a QR code like this:</p>
</div> <div class=„row-fluid build-image“ readability=„7“><img class=„49754-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium260/hacks_qr.png?1514692
358 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium640/hacks_qr.png?1514692358
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium800/hacks_qr.png?1514692358
800w, https://cdn-learn.adafruit.com/assets/assets/000/049/754/large1024/hacks_qr.png?1514692358
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium800/hacks_qr.png?151469235
8“ alt=„hacks_qr.png“/> <p>This is not the real token from my gmail</p> </div> <div

https://learn.adafruit.com/assets/49754
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium260/hacks_qr.png?1514692358
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium260/hacks_qr.png?1514692358
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium640/hacks_qr.png?1514692358
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium800/hacks_qr.png?1514692358
https://cdn-learn.adafruit.com/assets/assets/000/049/754/large1024/hacks_qr.png?1514692358
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium800/hacks_qr.png?1514692358
https://cdn-learn.adafruit.com/assets/assets/000/049/754/medium800/hacks_qr.png?1514692358

2025/09/17 15:01 11/13 Introduction | CircuitPython 2FA TOTP Authentication Friend

Qgelm - https://schnipsl.qgelm.de/

class=„row-fluid build-text“ readability=„34“> <p>Which is great for phones. For us, we need the
base32-encoded token. Click the Can't Scan It? link or otherwise request the text
token. You'll get a page like this</p> </div> <div class=„row-fluid build-image“ readability=„7“><img class=„49755-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium260/hacks_barcode.png?15
14692434 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium640/hacks_barcode.png?151469243
4 640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium800/hacks_barcode.png?151469243
4 800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/755/large1024/hacks_barcode.png?1514692434
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium800/hacks_barcode.png?1514
692434“ alt=„hacks_barcode.png“/> <p>This is not the real token from my gmail</p> </div>
<div class=„row-fluid build-text“ readability=„45“> <p>That string of letters and numbers may be
uppercase or lower case, it may also be 16 digits or 24 or 32 or some other qty. It doesn't matter!
Grab that string, and remove the spaces so its one long string like

"ra4ndd2utltotseol564z3jijj5jo677"

Note that the number 0 and number 1 never appear so anything that looks like an

O

,

l

or an

I

is a letter.</p> <p>Now edit this section of the code, you can display up to 3 accounts on a Feather
OLED. If you pad the name with spaces the numbers will be right-justified but its not important, I'm
just picky</p> </div> <div class=„build-code code-element“ readability=„19“> <pre class=„code-
text-only c4“> totp = [(„Discord “, 'JBSWY3DPEHPK3PXP'), # https://github.com/pyotp/pyotp exmple

 ("Gmail ", 'abcdefghijklmnopqrstuvwxyz234567'),

(„Accounts“, 'asfdkwefoaiwejfa323nfjkl')] </pre> <pre class=„prettyprint linenums“> totp =
[(„Discord “, 'JBSWY3DPEHPK3PXP'), # https://github.com/pyotp/pyotp exmple

 ("Gmail ", 'abcdefghijklmnopqrstuvwxyz234567'),

(„Accounts“, 'asfdkwefoaiwejfa323nfjkl')] </pre></div> <div class=„row-fluid build-text“
readability=„34“> <p>If you want to test the setup first, you can keep the Discord entry which is the
„PyOTP“ example token. Then scan this with your phone in Authy or Google Authenticator</p>
</div> <div class=„row-fluid build-image“><img
class=„49756-asset img-responsive“

https://learn.adafruit.com/assets/49755
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium260/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium260/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium640/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium640/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium800/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium800/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/large1024/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium800/hacks_barcode.png?1514692434
https://cdn-learn.adafruit.com/assets/assets/000/049/755/medium800/hacks_barcode.png?1514692434
https://github.com/pyotp/pyotp
https://github.com/pyotp/pyotp
https://learn.adafruit.com/assets/49756

Last
update:
2021/12/06
15:24

wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

https://schnipsl.qgelm.de/ Printed on 2025/09/17 15:01

srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium260/hacks_pyotpqr.png?15
14692753 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium640/hacks_pyotpqr.png?151469275
3 640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium800/hacks_pyotpqr.png?151469275
3 800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/756/large1024/hacks_pyotpqr.png?1514692753
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium800/hacks_pyotpqr.png?15146
92753“ alt=„hacks_pyotpqr.png“/></div> <div class=„row-fluid build-text“ readability=„39“>
<p>OK once you've set everything up lets test!</p> <p>Run the program directly on the Feather
with OLED attached

using ampy --port portname run main.py

</p> <p>You'll see it connect to your local network, get the time via NTP, then calculate and display
OTP codes both on the OLED and on the serial port (you'll need to wait till the program is done to see
the serial output)</p> </div> <div class=„row-fluid build-image“><img class=„49759-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium260/hacks_breadboard.jpg?
1514693495 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium640/hacks_breadboard.jpg?1514693
495 640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium800/hacks_breadboard.jpg?1514693
495 800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/759/large1024/hacks_breadboard.jpg?15146934
95 1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium800/hacks_breadboard.jpg?15
14693495“ alt=„hacks_breadboard.jpg“/></div> <div class=„row-fluid build-image“><img class=„49757-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium260/hacks_runmain.png?15
14693188 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium640/hacks_runmain.png?151469318
8 640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium800/hacks_runmain.png?151469318
8 800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/757/large1024/hacks_runmain.png?1514693188
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium800/hacks_runmain.png?1514
693188“ alt=„hacks_runmain.png“/></div> <div class=„row-fluid build-text“ readability=„34“>
<p>Check against your phone to make sure the codes are correct. Once you're satisfied, tweak the
two lines to change the behavior</p> </div> <div class=„build-code code-element“
readability=„11“> <pre class=„code-text-only c4“> ALWAYS_ON = False # Set to true if you never
want to go to sleep! ON_SECONDS = 60 # how long to stay on if not in always_on mode </pre> <pre
class=„prettyprint linenums“> ALWAYS_ON = False # Set to true if you never want to go to sleep!
ON_SECONDS = 60 # how long to stay on if not in always_on mode </pre></div> <div class=„row-
fluid build-text“ readability=„31“> <p>Then finalize by uploading main.py with ampy's

https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium260/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium260/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium640/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium640/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium800/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium800/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/large1024/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium800/hacks_pyotpqr.png?1514692753
https://cdn-learn.adafruit.com/assets/assets/000/049/756/medium800/hacks_pyotpqr.png?1514692753
https://learn.adafruit.com/assets/49759
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium260/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium260/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium640/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium640/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium800/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium800/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/large1024/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/large1024/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium800/hacks_breadboard.jpg?1514693495
https://cdn-learn.adafruit.com/assets/assets/000/049/759/medium800/hacks_breadboard.jpg?1514693495
https://learn.adafruit.com/assets/49757
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium260/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium260/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium640/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium640/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium800/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium800/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/large1024/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium800/hacks_runmain.png?1514693188
https://cdn-learn.adafruit.com/assets/assets/000/049/757/medium800/hacks_runmain.png?1514693188

2025/09/17 15:01 13/13 Introduction | CircuitPython 2FA TOTP Authentication Friend

Qgelm - https://schnipsl.qgelm.de/

put

command</p> </div> <div class=„row-fluid build-image“><img class=„49758-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium260/hacks_putmain.png?15
14693318 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium640/hacks_putmain.png?151469331
8 640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium800/hacks_putmain.png?151469331
8 800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/758/large1024/hacks_putmain.png?1514693318
1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium800/hacks_putmain.png?1514
693318“ alt=„hacks_putmain.png“/></div> </div> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

Last update: 2021/12/06 15:24

https://learn.adafruit.com/assets/49758
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium260/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium260/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium640/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium640/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium800/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium800/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/large1024/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium800/hacks_putmain.png?1514693318
https://cdn-learn.adafruit.com/assets/assets/000/049/758/medium800/hacks_putmain.png?1514693318
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-_-circuitpython-2fa-totp-authentication-friend

	[Introduction | CircuitPython 2FA TOTP Authentication Friend]
	Introduction | CircuitPython 2FA TOTP Authentication Friend

