2025/08/02 11:30 1/11 Introduction To TensorFlow

Introduction To TensorFlow

Originalartikel
Backup

<html> <p>I had great fun writing neural network software in the 90s, and | have been anxious to try
creating some using <a href=,,https://www.tensorflow.org/* target=,_blank“>TensorFlow</a>.</p>
<p>Google&#8217;s machine intelligence framework is the new hotness right now. And when
TensorFlow <a href=, https://github.com/samjabrahams/tensorflow-on-raspberry-pi“
target=,_blank“>became installable on the Raspberry Pi</a>, working with it became
very&#160;easy to do. In a short time | made a neural network that counts in binary. So | thought
I1&#8217;d pass on what I&#8217;ve learned so far. Hopefully this makes it easier for anyone else
who wants to try it, or for anyone who just wants some insight into neural networks.</p> <p/>
<h2>What Is TensorFlow?</h2> <p>To quote the TensorFlow website, TensorFlow is an
&#8220;0pen source software library for numerical computation using data flow
graphs&#8221;.&#160;What do we mean by &#8220;data flow graphs&#8221;? Well, that&#8217;s
the really cool part. But before we can answer that, we&#8217;ll need to talk a bit about the
structure for a simple neural network.</p> <figure id=,attachment_251874" style=, width: 801px"“
class=, wp-caption aligncenter“><img data-attachment-id=,251874"

data-
permalink=,,https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_neural_network/"
data-

orig-

file=,https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural _network.jpg?w=801&amp;
h=441" data-orig-size=,777,428" data-comments-opened=, 1" data-image-

quot;:&quot; &quot;, &quot;caption&quot;:&quot; &quot;,&quot;created_timestamp&quot;:&quot;0&quo
t;,&quot;copyright&quot;:&quot;&quot;,&quot;focal_length&quot;:&quot;0&quot;,&quot;iso&quot;:&qu
ot;0&quot;,&quot;shutter speed&quot;:&quot;0&quot;,&quot;title&quot;: &quot; &quot;,&quot;orientati
on&quot;:&quot;0&quot; }“ data-image-title=,Binary counter neural network” data-image-
description=,,“

data-

medium-file=,, https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=8
01&amp;h=441?w=400"

data-

large-

file=, https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&amp;
h=441?w=777" class=,wp-image-251874*“
src=,https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural network.jpg?w=801&amp;
h=441" alt=,Binary counter neural network” width=,801" height=,441"

srcset=, https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg 777w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=250&amp;h=13
8 250w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=400&amp;h=22
0 400w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=768&amp;h=42
3 768w" sizes=,(max-width: 801px) 100vw, 801px“/><figcaption class=,wp-caption-text“>Binary
counter neural network</figcaption></figure><h2>Basics of a Neural Network</h2> <p>A simple
neural network has some input units where the input goes.&#160;It also has hidden units, so-called

Qgelm - https://schnipsl.qgelm.de/


https://hackaday.com/2017/04/11/introduction-to-tensorflow/
https://www.qgelm.de/wb2html/wb95.html
https://www.tensorflow.org/
https://github.com/samjabrahams/tensorflow-on-raspberry-pi
https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_neural_network/
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441?w=400
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441?w=400
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441?w=777
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441?w=777
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=801&h=441
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=250&h=138
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=250&h=138
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=400&h=220
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=400&h=220
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=768&h=423
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network.jpg?w=768&h=423

Last update: 2021/12/06

1524 wallabag:introduction-to-tensorflow https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-to-tensorflow

because from a user&#8217;s perspective&#160;they&#8217;re literally hidden. And there are
output units, from which we get the results. Off to the side are also bias units, which are
there&#160;to help control the values emitted from the hidden and output units.&#160;Connecting
all of these units are a bunch of weights, which are just numbers, each of which is associated with two
units.</p> <p>The way we instill intelligence into this neural network is to&#160;assign values to all
those weights. That&#8217;s what training a neural&#160;network does, find suitable values for
those weights. Once trained,&#160;in our example, we&#8217;ll set the input units to the binary
digits 0, 0, and 0 respectively, TensorFlow will do stuff with everything in between,&#160;and the
output units will magically contain the binary digits 0, 0, and 1 respectively. In case you missed that,
it knew that the next number after binary 000 was 001. For 001, it should spit out 010, and so on up
to 111, wherein it&#8217;ll spit out 000. Once those weights are set appropriately, it&#8217;ll know
how to count.</p> <figure id=,attachment_251998" style=,width: 410px“ class=,wp-caption
alignright“><img data-attachment-id=,251998“

data-
permalink=,,https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_neural_network_
with_matrices/“

data-

orig-
file=,https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural _network with_matrices2.jp
g“ data-orig-size=,527,429" data-comments-opened=,1“ data-image-

quot;:&quot; &quot;, &quot;caption&quot;:&quot; &quot;,&quot;created_timestamp&quot;:&quot;0&quo
t;,&quot;copyright&quot;:&quot; &quot;,&quot;focal_length&quot;:&quot;0&quot;,&quot;iso&quot;:&qu
ot;0&quot;,&quot;shutter_speed&quot;:&quot;0&quot;,&quot;title&quot;:&quot; &quot;,&quot;orientati
on&quot;:&quot;0&quot; }“ data-image-title=,Binary counter neural network with matrices” data-
image-description=,,“

data-

medium-file=,, https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network with_ma
trices2.jpg?w=400&amp;h=326"

data-

large-
file=,https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jp
g?w=527" class=,wp-image-251998 size-medium*
src=,,https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network with_matrices2.jp
g?w=400&amp;h=326" alt=,Binary counter neural network with matrices” width=,400“
height=,326"

srcset=, https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network with_matrices
2.jpg?w=400&amp;h=326 400w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=
250&amp;h=204 250w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural _network with_matrices2.jpg
527w" sizes=, (max-width: 400px) 100vw, 400px"“/><figcaption class=, wp-caption-text“>Binary
counter neural network with matrices</figcaption></figure><p>0One step in
&#8220;running&#8221; the neural network is to multiply the value of&#160;each weight by the
value of its input unit, and then to store the result in the associated hidden unit.</p> <p>We can
redraw the units and weights as arrays, or what are called&#160;lists in Python. From a math
standpoint, they&#8217;re matrices.&#160;We&#8217;ve redrawn only a portion of them in the
diagram.&#160;Multiplying the input matrix with the weight matrix involves simple matrix
multiplication resulting in the five element hidden matrix/list/array.</p> <h2
style=,clear:none;“>From Matrices to Tensors</h2> <p>In TensorFlow, those lists are called

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:30


https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_neural_network_with_matrices/
https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_neural_network_with_matrices/
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=400&h=326
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=400&h=326
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=527
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=527
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=400&h=326
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=400&h=326
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=400&h=326
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=400&h=326
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=250&h=204
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg?w=250&h=204
https://hackadaycom.files.wordpress.com/2017/04/bincounter_neural_network_with_matrices2.jpg

2025/08/02 11:30 3/11 Introduction To TensorFlow

tensors. And the matrix multiplication step is called an operation, or op in programmer-speak, a term
you&#8217;ll have to get used to if you plan on reading the TensorFlow documentation. Taking it
further, the whole neural network is a collection of tensors and the ops that operate on them.
Altogether they&#160;make up a graph.</p> <div class=,tiled-gallery type-rectangular tiled-gallery-
unresized” data-original-width=,800" data-carousel-
extra=,{&quot;blog_id&quot;:4779443,&quot; permalink&quot;:&quot; https:\/\/hackaday.com\/2017V/
04\/11Vintroduction-to-tensorflow\/&quot;,&quot;likes_blog_id&quot;:4779443}"> <div
class=,gallery-row” style=,width: 800px; height: 612px;“ data-original-width=,800" data-original-
height=,612"“> <div class=, gallery-group images-1“ style=,width: 386px; height: 612px;“ data-
original-width=,386" data-original-height=,612"> <div class=,tiled-gallery-item tiled-gallery-item-
large” itemprop=,associatedMedia“ itemscope=," itemtype=,http://schema.org/ImageObject“> <a
href=, https://hackaday.com/2017/04/11/introduction-to-tensorflow/tb_bincounter full _graph/“
border=,0" itemprop=,url“> <meta itemprop=,width“ content=,382"/><meta itemprop=,height”
content=,608"/><img data-attachment-id=,251876"

data-orig-file=, https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter full graph.jpg” data-
orig-size=,710,1130" data-comments-opened=,1" data-image-

quot;:&quot; &quot;, &quot;caption&quot;:&quot; &quot;,&quot;created_timestamp&quot;:&quot;0&quo
t;,&quot;copyright&quot;:&quot;&quot;,&quot;focal_length&quot;:&quot;0&quot;,&quot;iso&quot;:&qu
ot;0&quot;,&quot;shutter_speed&quot;:&quot;0&quot;,&quot;title&quot;:&quot; &quot;,&quot;orientati
on&quot;:&quot;0&quot; }“ data-image-title=,Binary counter&#8217;s full graph” data-image-
description=,,"“

data-

medium-

file=, https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter full graph.jpg?w=251" data-
large-file=, https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter full graph.jpg?w=393*
src=,https://il.wp.com/hackadaycom.files.wordpress.com/2017/04/tb_bincounter full graph.jpg?w=3
82&amp;h=608&amp;crop&amp;ssl=1“ width=,382" height=,608" data-original-width=,382" data-
original-height=,608" itemprop=,http://schema.org/image*” title=,Binary counter's full graph*
alt=,Binary counter's full graph“ style=,width: 382px; height: 608px;“/></a> <div class=,tiled-
gallery-caption” itemprop=, caption description“> Binary counter&#8217;s full graph </div> </div>
</div> <!- close group -> <div class=,gallery-group images-1“ style=,width: 414px; height: 612px;“
data-original-width=,414" data-original-height=,612“> <div class=,tiled-gallery-item tiled-gallery-
item-large” itemprop=,associatedMedia” itemscope=," itemtype=,,http://schema.org/ImageObject”>
<a
href=,https://hackaday.com/2017/04/11/introduction-to-tensorflow/tb_bincounter_expanded_graph/“
border=,0" itemprop=,url“> <meta itemprop=, width“ content=,410“/><meta itemprop=,height”
content=,608“/><img data-attachment-id=,251877"

data-orig-

file=, https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded _graph.jpg“ data-
orig-size=,1006,1490" data-comments-opened=,1" data-image-

quot;:&quot; &quot;, &quot;caption&quot;:&quot; &quot;,&quot;created_timestamp&quot;:&quot;0&quo
t;,&quot;copyright&quot;:&quot; &quot;,&quot;focal _length&quot;:&quot;0&quot;,&quot;iso&quot;:&qu
ot;0&quot;,&quot;shutter_speed&quot;:&quot;0&quot;,&quot;title&quot;:&quot;&quot;,&quot;orientati
on&quot;:&quot;0&quot; }“ data-image-title=,layerl expanded” data-image-description=," data-
medium-file=,, https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jpg?
w=270"

data-

large-

file=, https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded _graph.jpg?w=422"

Qgelm - https://schnipsl.qgelm.de/


http://schema.org/ImageObject
https://hackaday.com/2017/04/11/introduction-to-tensorflow/tb_bincounter_full_graph/
https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_full_graph.jpg
https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_full_graph.jpg?w=251
https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_full_graph.jpg?w=393
https://i1.wp.com/hackadaycom.files.wordpress.com/2017/04/tb_bincounter_full_graph.jpg?w=382&h=608&crop&ssl=1
https://i1.wp.com/hackadaycom.files.wordpress.com/2017/04/tb_bincounter_full_graph.jpg?w=382&h=608&crop&ssl=1
http://schema.org/image
http://schema.org/ImageObject
https://hackaday.com/2017/04/11/introduction-to-tensorflow/tb_bincounter_expanded_graph/
https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jpg
https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jpg?w=270
https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jpg?w=270
https://hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jpg?w=422

Last update: 2021/12/06

1524 wallabag:introduction-to-tensorflow https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-to-tensorflow

src=,,https://i2.wp.com/hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jp
g?w=410&amp;h=608&amp;crop&amp;ssl=1" width=,410" height=,608" data-original-width=,410"
data-original-height=,608" itemprop=,http://schema.org/image” title=,layerl expanded” alt=,layerl
expanded” style=,width: 410px; height: 608px;“/></a> <div class=,tiled-gallery-caption”
itemprop=,,caption description“> layerl expanded </div> </div> </div> <!- close group -> </div>
<!- close row -> </div> <p>Shown here are snapshots taken of <a

href=, https://hackaday.com/2017/03/24/ten-minute-tensorflow-speech-recognition/“>TensorBoard, a
tool for visualizing&#160;the graph</a> as well as examining tensor values during and after
training.&#160;The tensors are the lines, and written on the lines are the
tensor&#8217;s&#160;dimensions. Connecting the tensors are all the ops, though some of the things
you see can be double-clicked on in order to expand for more detail, &#160;as we&#8217;ve done for
layerl in the second snapshot.</p> <p>At the very bottom is x, the name we&#8217;ve given for a
placeholder op that allows us to provide values for the input tensor. The line going up and to the left
from it is the input tensor. Continue following that line up and you&#8217;ll find the MatMul op, which
does the matrix multiplication with that input tensor&#160;and the tensor which is the other line
leading into the MatMul op.&#160;That tensor represents&#160;the weights.</p> <p>All this was
just to give you a feel for what a graph and its tensors and ops are, giving you a better idea of what
we mean by&#160;TensorFlow being a &#8220;software library for numerical computation using
data flow graphs&#8221;. But why we would want to create these graphs?</p> <h2>Why Create
Graphs?</h2> <p>The API that&#8217;s currently stable is one for Python, an interpreted language.
Neural networks are compute intensive and a large one could&#160;have thousands or even millions
of weights. Computing by interpreting every step would take forever.</p> <p>So we instead create a
graph made up of tensors and ops, describing the layout of the neural network, all mathematical
operations, and&#160;even initial values for variables. Only after we&#8217;ve created this graph do
we then pass it to what TensorFlow calls a session. This is known as deferred execution. The session
runs the graph using very efficient code. Not only that, but many of the operations, such as matrix
multiplication, are ones that <a href=,,https://www.tensorflow.org/tutorials/using_gpu*“

target=, _blank“>can be done on a supported GPU</a> (Graphics Processing Unit) and the session
will do that for you. Also, TensorFlow is built to be able to distribute the processing across multiple
machines and/or GPUs. Giving it the complete graph allows it to do that.</p> <h2>Creating The
Binary Counter Graph</h2> <p>And here&#8217;s the code for our binary counter neural network.
You can find the full source code on <a
href=,https://github.com/Hack-a-Day/bincounter_TensorFlow_example/“ target=,_blank“>this GitHub
page</a>. Note that&#160;there&#8217;s additional code in it for saving information for use
with&#160;TensorBoard.</p> <p>We&+#8217;ll start with the code for creating the graph of tensors
and ops.</p> <pre style=,padding-left:30px;“>import tensorflow as tf&#13; sess =
tf.InteractiveSession()&#13; &#13; NUM_INPUTS = 3&#13; NUM _HIDDEN = 5&#13; NUM_OUTPUTS =
3&#13; </pre> <p>We first import the

tensorflow

module, create a session for use&#160;later, and, to make our code more understandable, we create
a few variables containing the number of units in our network.</p> <pre style=,padding-
left:30px;“>x = tf.placeholder(tf.float32, shape=[None, NUM_INPUTS], name="x")&#13;y_=
tf.placeholder(tf.float32, shape=[None, NUM_OUTPUTS], name='y ")&#13; </pre> <p>Then we
create placeholders for our input and output units. A placeholder&#160;is a TensorFlow op for things
that we&#8217;l provide values for later.&#160;

X

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:30


https://i2.wp.com/hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jpg?w=410&h=608&crop&ssl=1
https://i2.wp.com/hackadaycom.files.wordpress.com/2017/04/tb_bincounter_expanded_graph.jpg?w=410&h=608&crop&ssl=1
http://schema.org/image
https://hackaday.com/2017/03/24/ten-minute-tensorflow-speech-recognition/
https://www.tensorflow.org/tutorials/using_gpu
https://github.com/Hack-a-Day/bincounter_TensorFlow_example/

2025/08/02 11:30 5/11 Introduction To TensorFlow

and

y_
are now tensors in a new graph and each has a

placeholder
op associated with it.</p> <p>You might wonder why we define the shapes as

[None, NUM INPUTS]
and

[None, NUM OUTPUTS]
, two dimensional lists, and why

None
for the first dimension? In the overview of neural networks above it looks like we&#8217;ll give it one
input at a time and train it to produce a given output. I1t&#8217;s more efficient though, if we give it
multiple input/output pairs at a time, what&#8217;s called a batch. The first dimension is for the
number of input/output pairs in each batch. We won&#8217;t know how many are in a batch until we
actually give one later. And in fact, we&#8217;re using the same graph for training, testing, and for
actual usage so the batch size won&#8217;t always be the same. So we use the Python placeholder
object

None
for the size of the first dimension for now.</p> <pre style=,padding-left:30px;“>W fcl =
tf.truncated_normal([NUM_INPUTS, NUM_HIDDEN], mean=0.5, stddev=0.707)&#13; W _fcl =
tf.Variable(W fcl, name='W fcl")&#13; &#13; b_fcl = tf.truncated _normal([NUM_HIDDEN],
mean=0.5, stddev=0.707)&#13; b_fcl = tf.Variable(b_fcl, name="'b fcl')&#13; &#13; h_fcl =
tf.nn.relu(tf.matmul(x, W_fcl) + b_fc1)&#13; </pre> <p>That&#8217;s followed by creating layer
one of the neural network graph: the weights

W fcl
, the biases

b fcl
, and the hidden units

h fcl

. The &#8220;fc&#8221; is a convention meaning &#8220;fully connected&#8221;,&#160;since the
weights connect every input unit to every hidden unit.</p> <p>

Qgelm - https://schnipsl.qgelm.de/



Last update: 2021/12/06

1524 wallabag:introduction-to-tensorflow https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-to-tensorflow

tf.truncated normal

results in a number of ops and tensors which will later assign normalized, random numbers to all the
weights.</p> <p>The

Variable

ops are given a value to do initialization with, random numbers&#160;in this case, and keep their
data across multiple runs. They&#8217;re also handy for saving the neural network to a file,
something you&#8217;ll want to do once it&#8217;s trained.</p> <p>You can see where
we&#8217;ll be doing the matrix multiplication using the&#160;

matmul
op. We also insert an
add
op which will add on the bias weights. The
relu

op performs what we call an activation function.&#160;The matrix multiplication and the addition are
linear operations.&#160;There&#8217;s a very limited number of things a neural network can
learn&#160;using just linear operations. The activation function provides some&#160;non-linearity.
In the case of the relu activation function, it&#160;sets any values that are less than zero to zero,
and all other values&#160;are left unchanged. Believe it or not, doing that opens up a
whole&#160;0ther world of things that can be learned.</p> <pre style=,padding-left:30px;“>W fc2
= tf.truncated_normal([NUM_HIDDEN, NUM_OUTPUTS], mean=0.5, stddev=0.707)&#13; W_fc2 =
tf.Variable(W _fc2, name='W _fc2')&#13; &#13; b_fc2 = tf.truncated_normal([NUM_OUTPUTS],
mean=0.5, stddev=0.707)&#13; b_fc2 = tf.Variable(b_fc2, name="'b_fc2')&#13; &#13;y =
tf.matmul(h_fcl, W fc2) + b fc2&#13; </pre> <p>The weights and biases for layer two are set up
the same&#160;as for layer one but the output layer is different. We again will do&#160;a matrix
multiplication, this time multiplying&#160;the weights and the hidden units,&#160;and then adding
the bias weights.&#160;We&#8217;ve left the activation function for the next bit of code.</p> <pre
style=,padding-left:30px;“>results = tf.sigmoid(y, name="results')&#13; &#13; cross_entropy =
tf.reduce_mean(&#13; tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=y ))&#13; </pre>
<p>Sigmoid is another activation function, like the relu we encountered&#160;above, there to
provide non-linearity. | used sigmoid here partly because <a
href=,https://en.wikipedia.org/wiki/Sigmoid_function” target=,_blank">the sigmoid equation</a>
results in values between 0 and 1, ideal&#160;for our binary counter example. | also used it because
it&#8217;s&#160;g00d for outputs where more than one output unit can have a large value. In our
case, to represent the binary number 111, all the output units can have large values. When doing
image classification we&#8217;d want something quite different, we&#8217;d want just one output
unit to fire with a large value. For example, we&#8217;d want the output unit representing giraffes to
have a large value if an image contains a giraffe.&#160; Something like <a
href=,https://en.wikipedia.org/wiki/Softmax_function” target=,,_blank">softmax</a> would be a
good choice for image classification.</p> <p>0n close inspection, it looks like there&#8217;s
some&#160;duplication. We seem to be inserting sigmoid twice. We&#8217;re actually creating two
different, parallel outputs here. The

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:30


https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Softmax_function

2025/08/02 11:30 7/11 Introduction To TensorFlow

cross_entropy

&#160;tensor will be used during training of the neutral network.&#160;The

results
tensor will be used when we run our trained neural network later for whatever purpose it&#8217;s
created, for fun in our case.&#160;| don&#8217;t know if this is the best way of doing this, but
it&#8217;s the&#160;way | came up with.</p> <pre style=,padding-left:30px;“>train_step =
tf.train.RMSPropOptimizer(0.25, momentum=0.5).minimize(cross_entropy)&#13; </pre> <p>The last
piece we add to our graph is the training. This is the&#160;0p or ops that will adjust all the weights
based on training data.&#160;Remember, we&#8217;re still just creating a graph here. The actual

training will happen later when we run the graph.</p> <p>There are a few optimizers to chose from.
| chose

tf.train.RMSPropOptimizer

because,&#160;like the sigmoid, it works well for cases where all output values can be large. For
classifying things as when doing image classification,&#160;

tf.train.GradientDescentOptimizer

might be better.</p> <h2>Training And Using The Binary Counter</h2> <p>Having created the
graph, it&#8217;s time to do the training. Once it&#8217;s&#160;trained, we can then use it.</p>
<pre style=,padding-left:30px;“>inputvals = 13; [1, 1, 0], [1, 1, 1&#13; targetvals = 13; [1, 1, 1], [0,
0, 0&#13; </pre> <p>First, we have some training data:

inputvals

and

targetvals

inputvals

&#160;contains the inputs, and for each one there&#8217;s a corresponding
targetvals

&#160;target value. For

inputvals[0]

&#160;we have

[0, 0, 0]

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/doku.php?id=wallabag:0_0_0_0_0_1_0_1_0_0_1_1_1_0_0_1_0_1#section13110111
https://schnipsl.qgelm.de/doku.php?id=wallabag:0_0_1_0_1_0_0_1_1_1_0_0_1_0_1_1_1_0#section13111000
https://schnipsl.qgelm.de/doku.php?id=wallabag:0_0_1_0_1_0_0_1_1_1_0_0_1_0_1_1_1_0#section13111000

Last update: 2021/12/06

1524 wallabag:introduction-to-tensorflow https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-to-tensorflow

, and the expected&#160;output is
targetvals[0]
, which is
[0, 0, 1]
, and so on.</p> <pre style=,padding-left:30px;“>if do_training == 1:&#13;
sess.run(tf.global variables initializer())&#13;
&#13;
for i in range(10001) :&#13;
if 1%100 == 0:&#13;
train _error = cross _entropy.eval(feed dict={x: inputvals,
y :targetvals})&#13;
print("step %d, training error %g"%(i, train error))&#13;
if train error &lt; 0.0005:&#13;
break&#13;
&#13;
sess.run(train step, feed dict={x: inputvals, y : targetvals})&#13;
&#13;
if save trained == 1:&#13;
print("Saving neural network to %s.*"%(save file))&#13;
saver = tf.train.Saver()&#13;
saver.save(sess, save file)&#13;
</pre> <p>
do training
and

save trained

can be hardcoded, and changed for each use,&#160;0r can be set using command line
arguments.</p> <p>We first go through all those

Variable

ops and have them initialize their tensors.</p> <p>Then, for up to 10001 times we run the graph
from the bottom up to&#160;the

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:30



2025/08/02 11:30 9/11 Introduction To TensorFlow

train step

tensor, the last thing we added to our graph.&#160;We pass
inputvals

and

targetvals

to

train_step

&#8216;s op or ops, which we&#8217;d&#160;added using
RMSPropOptimizer

. This is the step that adjusts all the&#160;weights such that the given inputs will result in something
close to&#160;the corresponding target outputs. If the error between target outputs and actual
outputs gets small enough sooner, then we break out of the loop.</p> <p>If you have thousands of
input/output pairs then you could give it a subset of them at a time, the batch we spoke of earlier. But
here we have only eight, and so we give all of them each time.</p> <p>If we want to, we can also
save the network to a file. Once&#160;it&#8217;s trained well, we don&#8217;t need to train it
again.</p> <pre style=,padding-left:30px;“>else: # if we're not training then we must be loading
from file&#13; &#13;

print("Loading neural network from %s"%(save file))&#13;

saver = tf.train.Saver()&#13;

saver.restore(sess, save file)&#13;

# Note: the restore both loads and initializes the variables&#13;

</pre> <p>If we&#8217;re not training it then we instead load the trained network&#160;from a
file. The file contains only the values for the tensors&#160;that have

Variable

ops. It doesn&#8217;t contain the structure of the&#160;graph. So even when running an already
trained graph, we still need&#160;the code to create the graph. There is a way to save and load
graphs&#160;from files using <a href=, https://www.tensorflow.org/programmers_guide/meta_graph“
target=,_blank“>MetaGraphs</a> but we&#8217;re not doing that here.</p> <pre style=,padding-
left:30px;“>print("\nCounting starting with: 0 0 0')&#13; res = sess.run(results, feed dict={x: 0, 0,
0})&#13; print('%g %g %g'%(res[0][0], res[0][1], res[0][2]))&#13; for i in range(8):&#13; res =
sess.run(results, feed_dict={x: res})&#13; print('%g %g %g'%(res[0][0], res[0][1], res[0][2]))&#13;
</pre> <p>In either case we try it out. Notice that we&#8217;re running it from&#160;the bottom of
the graph up to the results tensor we&#8217;d talked about above, the duplicate output
we&#8217;d created especially for when&#160;making use of the trained network.</p> <p>We give
it 000, and hope that it returns something close to 001.&#160;We pass what was returned, back in
and run it again. Altogether we run it 9 times, enough times to count from 000 to 111 and then back
to 000&#160;again.</p> <figure id=,attachment 251879 style=, width: 800px“ class=,wp-caption

Qgelm - https://schnipsl.qgelm.de/


https://www.tensorflow.org/programmers_guide/meta_graph
https://schnipsl.qgelm.de/doku.php?id=wallabag:0_0_0
https://schnipsl.qgelm.de/doku.php?id=wallabag:0_0_0

Last update: 2021/12/06

1524 wallabag:introduction-to-tensorflow https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-to-tensorflow

aligncenter”“><img data-attachment-id=,251879“

data-
permalink=,,https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_py program_out
put_wide/*

data-

orig-

file=, https://hackadaycom.files.wordpress.com/2017/04/bincounter_py program_output wide.jpg?w=
800&amp;h=303" data-orig-size=,832,315" data-comments-opened=, 1" data-image-

quot;:&quot; &quot;, &quot;caption&quot;:&quot; &quot;,&quot;created_timestamp&quot;:&quot;0&quo
t;,&quot;copyright&quot;:&quot; &quot;,&quot;focal_length&quot;:&quot;0&quot;,&quot;iso&quot;:&qu
ot;0&quot;,&quot;shutter_speed&quot;:&quot;0&quot;,&quot;title&quot;:&quot; &quot;,&quot;orientati
on&quot;:&quot;0&quot; }“ data-image-title=,Running the binary counter” data-image-description=,,*
data-
medium-file=,https://hackadaycom.files.wordpress.com/2017/04/bincounter_py _program_output_wid
e.jpg?w=800&amp;h=303?w=400"

data-

large-
file=,https://hackadaycom.files.wordpress.com/2017/04/bincounter_py program_output wide.jpg?w=
800&amp;h=303?w=800" class=,size-full wp-image-251879“
src=,https://hackadaycom.files.wordpress.com/2017/04/bincounter_py program_output_wide.jpg?w=
800&amp;h=303" alt=,Running the binary counter” width=,800" height=,303"“
srcset=,,https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output wide.jpg?
w=800&amp;h=303 800w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py program_output wide.jpg?w=250&
amp;h=95 250w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py program_output wide.jpg?w=400&
amp;h=151 400w,

https://hackadaycom.files.wordpress.com/2017/04/bincounter_py program_output_wide.jpg?w=768&
amp;h=291 768w,
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py program_output wide.jpg 832w*“
sizes=,(max-width: 800px) 100vw, 800px“/><figcaption class=,wp-caption-text“>Running the
binary counter</figcaption></figure><p>Here&#8217;s the output during successful training and
subsequent&#160;counting. Notice that it trained within 200 steps through the loop.&#160;Very
occasionally it does all 10001 steps without reducing&#160;the training error sufficiently, but once
you&#8217;ve trained it successfully&#160;and saved it, that doesn&#8217;t matter.</p> <h2>The
Next Step</h2> <p>As we said, the code for the binary counter neural network is on <a
href=,https://github.com/Hack-a-Day/bincounter TensorFlow_example/“ target=,_blank“>our github
page</a>. You can start with that, start from scratch, or use any of the many tutorials on the <a
href=,https://www.tensorflow.org/“ target=,_blank“>TensorFlow website</a>. Getting it to do
something with hardware is definitely my next step, taking inspiration from <a

href=, https://hackaday.com/2016/10/09/tensorflow-robot-recognizes-objects/“>this robot that [Lukas
Biewald] made recognize objects around his workshop</a>.</p> <p>What are you using, or
planning to use TensorFlow for? Let us know in the comments below and maybe we&#8217;1l give it a
try in a future article!</p> </html>

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:30


https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_py_program_output_wide/
https://hackaday.com/2017/04/11/introduction-to-tensorflow/bincounter_py_program_output_wide/
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303?w=400
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303?w=400
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303?w=800
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303?w=800
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=800&h=303
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=250&h=95
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=250&h=95
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=400&h=151
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=400&h=151
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=768&h=291
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg?w=768&h=291
https://hackadaycom.files.wordpress.com/2017/04/bincounter_py_program_output_wide.jpg
https://github.com/Hack-a-Day/bincounter_TensorFlow_example/
https://www.tensorflow.org/
https://hackaday.com/2016/10/09/tensorflow-robot-recognizes-objects/

2025/08/02 11:30 11/11 Introduction To TensorFlow

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link: :
https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-to-tensorflow '

Last update: 2021/12/06 15:24

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:introduction-to-tensorflow

	[Introduction To TensorFlow]
	Introduction To TensorFlow


