
2025/08/02 11:13 1/4 Linux Fu: Better Bash Scripting

Qgelm - https://schnipsl.qgelm.de/

Linux Fu: Better Bash Scripting

Originalartikel

Backup

<html> <p>It is easy to dismiss bash — the typical Linux shell program — as just a
command prompt that allows scripting. Bash, however, is a full-blown programming language. I
wouldn’t presume to tell you that it is as fast as a compiled C program, but that’s not
why it exists. While a lot of people use shell scripts as an analog to a batch file in MSDOS, it can do so
much more than that. Contrary to what you might think after a casual glance, it is entirely possible to
write scripts that are reliable and robust enough to use in many embedded systems on a Raspberry Pi
or similar computer.</p> <p>I say that because sometimes bash gets a bad reputation. For one
thing, it emphasizes ease-of-use. So while it has features that can promote making a robust script,
you have to know to turn those features on. Another issue is that a lot of the functionality
you’ll use in writing a bash script doesn’t come from bash, it comes from Linux
commands (or whatever environment you are using; I’m going to assume some Linux
distribution). If those programs do bad things, that isn’t a problem specific to bash.</p>
<p>One other limiting issue to bash is that many people (and I’m one of them) tend to write
scripts using constructs that are compatible with older shells. Often times bash can do things better
or neater, but we still use the older ways. For example:</p> <p/> <pre>if [$X -gt 0
]  then …. fi</pre> <p>This works in bash and a lot of other similar shells.
However, bash can do better, for example, working on strings instead of integers:</p> <pre>if
0 then … fi</pre> <h2>Features</h2> <p><a
href=„https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png“
target=„_blank“><img data-attachment-id=„220490“
data-permalink=„http://hackaday.com/2016/08/30/shell-game/shell-game-blogview/“ data-orig-
file=„https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png“ data-orig-
size=„800,250“ data-comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„shell-game-blogview“ data-image-description=„“ data-
medium-file=„https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&a
mp;h=125“
data-large-file=„https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=800“
class=„wp-image-220490 size-medium alignright“
src=„https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=12
5“ alt=„“ width=„400“ height=„125“
srcset=„https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=
125 400w,
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=250&h=78
250w,
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=768&h=240
768w, https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png 800w“
sizes=„(max-width: 400px) 100vw, 400px“/></p> <p>Don’t think bash is a
programming language? It has arrays, loops, sockets, regular expression matching, file I/O, and lots
more. However, there are a few things you should know when writing scripts that you expect to work
well. You might add your own items to this list, but this one is what comes to my mind:</p>

http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/
https://www.qgelm.de/wb2html/wb138.html
https://schnipsl.qgelm.de/doku.php?id=x_gt:0
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png
http://hackaday.com/2016/08/30/shell-game/shell-game-blogview/
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=125
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=125
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=800
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=125
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=125
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=125
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=400&h=125
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=250&h=78
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png?w=768&h=240
https://hackadaycom.files.wordpress.com/2016/08/shell-game-blogview.png

Last update:
2021/12/06 15:24 wallabag:linux-fu_-better-bash-scripting https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-better-bash-scripting

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:13

Use “set -o errexit” to cause the script to exit if any line fails Use
“set -o nounset” to cause an error if you use an empty environment variable
If you don’t expect a variable to change, declare it readonly Expect variables
could have spaces and quote accordingly Use traps to clean up your mess
<h2>Exit on Error</h2> <p><a
href=„https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png“
target=„_blank“><img data-attachment-id=„263323“
data-
permalink=„http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/emergency-exit-98585_64
0/“ data-orig-file=„https://hackadaycom.files.wordpress.com/2017/06/emergency-
exit-98585_640.png“ data-orig-size=„640,640“ data-comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„emergency-exit-98585_640“ data-image-description=„“
data-
medium-file=„https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=
400“
data-
large-
file=„https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=625“
class=„alignright size-thumbnail wp-image-263323“
src=„https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=250&am
p;h=250“ alt=„“ width=„250“ height=„250“
srcset=„https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=250&
amp;h=250 250w,
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=500&h=5
00 500w,
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=400&h=4
00 400w“ sizes=„(max-width: 250px) 100vw, 250px“/>If you use “set -o errexit”
then any line that returns a non-zero error code will stop script execution. You might object that you
want to test for that condition like this:</p> <pre>some_command if $
then  recover fi</pre> <p>If you use the errexit flag, that test
will never occur because once some_command throws the error, you are done. Simply rewrite like
this:</p> <pre>some_command || recover</pre> <p>The effect is if some_command returns true
(that is, zero), then bash knows the OR operator is satisfied so it doesn’t run any more
commands. If it fails, then bash can’t tell if the OR is satisfied or not, so it runs recover. The
exit code of the entire thing is either 0 from some_command or the exit code of recover, whatever
that is.</p> <p>Sometimes you have a command that could return an error and you don’t
care. That’s easy to fix:</p> <pre>some_other_command || true</pre> <p>By the way,
usually, the last item in a pipeline determines the result. For example:</p> <pre>a | b | c</pre>
<p>The exit code of that line is whatever c returns. However, you can “set -o pipefail”
to cause any error code in the pipe to halt the script. Even better is the $PIPESTATUS variable which is
an array with all the exit codes from the last pipeline. So whatever program b returned will be in
${PIPESTATUS[1]}, in the above example.</p> <h2>Unset Variables</h2> <p>Using “set -o
nonunset” forces you to initialize all variables. For example, here’s a really bad script
(don’t run it):</p> <pre>TOPDIR=tmp #rm -rf /${TOPDIRR}</pre> <p>You can argue
this isn’t great code, but regardless, because TOPDIR has a typo in the last line,
you’ll erase your root directory if this runs without the protective comment in front of the rm.

https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png
http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/emergency-exit-98585_640/
http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/emergency-exit-98585_640/
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=400
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=400
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=625
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=250&h=250
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=250&h=250
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=250&h=250
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=250&h=250
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=500&h=500
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=500&h=500
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=400&h=400
https://hackadaycom.files.wordpress.com/2017/06/emergency-exit-98585_640.png?w=400&h=400
https://schnipsl.qgelm.de/doku.php?id=wallabag& != 0

2025/08/02 11:13 3/4 Linux Fu: Better Bash Scripting

Qgelm - https://schnipsl.qgelm.de/

This works for command line parameters, too, so it will protect you if you had:</p> <p>bad_cmd
/$1</p> <h2>Readonly</h2> <p>Many times you set a variable and you really need a constant. It
shouldn’t change as the script executes and if it does that indicates a bug. You can declare
those readonly:</p> <pre>readonly BASEDIR=„~/testdir“ readonly TIMEOUT_S=10</pre>
<h2>Expect Spaces</h2> <p><img data-
attachment-id=„263324“
data-permalink=„http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/blanks/“ data-orig-
file=„https://hackadaycom.files.wordpress.com/2017/06/blanks.png“ data-orig-size=„600,600“ data-
comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„blanks“ data-image-description=„“ data-medium-
file=„https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=400“
data-large-file=„https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=600“
class=„alignleft size-thumbnail wp-image-263324“
src=„https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=250&h=250“ alt=„“
width=„250“ height=„250“
srcset=„https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=250&h=250 250w,
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=500&h=500 500w,
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=400&h=400 400w“
sizes=„(max-width: 250px) 100vw, 250px“/>File systems allow spaces and people love to use
them. This can lead to unfortunate things like:</p> <pre>rm $2</pre> <p>When $2 is something
like “readme.txt” that’s fine. However, if $2 is “The quick red
fox” you wind up trying to erase four files named “The,”
“quick,” “red,” and “fox.” If you are lucky, none of
those files exist and you get errors. If you are unlucky, you just erased the wrong file.</p> <p>The
simple answer is to quote everything.</p> <pre>rm „$2“</pre> <p>If you ever use $@ to get all
arguments, you should quote it to prevent problems. Consider this script:</p>
<pre>#!/bin/bash function p1 { echo $1 }  p1
$@ p1 „$@“</pre> <p>Try running the script with a quoted argument like “the quick
red fox”. The first function call will get four arguments and the second call will get only one,
which is almost surely what you intended.</p> <h2>Traps</h2> <p><img data-
attachment-id=„263325“
data-permalink=„http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/trap/“ data-orig-
file=„https://hackadaycom.files.wordpress.com/2017/06/trap.jpg“ data-orig-size=„800,289“ data-
comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„trap“ data-image-description=„“
data-medium-file=„https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=400&h=145“
data-large-file=„https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=800“ class=„size-
medium wp-image-263325 alignleft“
src=„https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=400&h=145“ alt=„“
width=„400“ height=„145“
srcset=„https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=400&h=145 400w,

https://hackadaycom.files.wordpress.com/2017/06/blanks.png
http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/blanks/
https://hackadaycom.files.wordpress.com/2017/06/blanks.png
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=400
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=600
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=250&h=250
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=250&h=250
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=500&h=500
https://hackadaycom.files.wordpress.com/2017/06/blanks.png?w=400&h=400
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg
http://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/trap/
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=400&h=145
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=800
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=400&h=145
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=400&h=145

Last update:
2021/12/06 15:24 wallabag:linux-fu_-better-bash-scripting https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-better-bash-scripting

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:13

https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=250&h=90 250w,
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=768&h=277 768w,
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg 800w“ sizes=„(max-width: 400px) 100vw,
400px“/>It isn’t uncommon for scripts to create temporary lock files and other things
that need cleaning up if the script stops. That’s what the trap command is for. Suppose you
are working on building a file called /tmp/output.data and you want to remove it if you don’t
get a chance to complete. Easy:</p> <pre style=„clear:both;“>trap „rm -f /tmp/output; exit“ INT
TERM EXIT</pre> <p>You can look up the trap command for more details, but this is a great way to
make things happen when a script ends for any reason. The exit command in quotes, by the way, is
necessary or else the script will attempt to keep running. Of course, in an embedded system, you
might want that behavior, too.</p> <p>You probably want to remove the trap before you are done
unless you really want output.data deleted, so:</p> <pre>trap - INT TERM EXIT</pre> <h2>Wrap
Up</h2> <p>You should consider turning off features you don’t need, especially if taking
input from outside your script. For example, using “set -o noglob” will prevent bash
from expanding wildcards. Of course, if you need wildcards, you can’t do this — at
least not for the part of the script that uses them. You can also use “shopt -s failglob”
which will cause wildcards to throw an error, if you want to secure your script.</p> <p>Speaking of
security, be very careful running user input as commands. Security is an entirely different topic, but
even something that seems innocent can be maniuplated to do bad things if you are not careful. For
example, suppose you secure sudo to allow a few commands and you offer the script:</p>
<pre>sudo -u protuser „$@“</pre> <p>If sudo is set up right, what’s the harm?
Well… the harm is that I can pass the argument “-u root reboot” (for example)
and sudo will decide I’m root instead of protuser. Be careful!</p> <p>There are a lot of
tricks to writing bash scripts that are portable. I don’t care about those in this context
because if I’m deploying an embedded system on a Raspberry Pi, I will control the
configuration so that I know where /tmp is and where bash is located and what version of different
programs are available. However, if you are distributing scripts to machines you don’t control,
you might consider searching the internet about bash script portability.</p> <p>If you want to catch
a lot of potential errors in scripts (including some portability issues) you can try ShellCheck. You might also appreciate Google’s shell style
guide. If you aren’t sure bash is really a programming language, this should convince you.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-better-bash-scripting

Last update: 2021/12/06 15:24

https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=250&h=90
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg?w=768&h=277
https://hackadaycom.files.wordpress.com/2017/06/trap.jpg
https://hackaday.com/?s=shellcheck
https://google.github.io/styleguide/shell.xml
https://hackaday.com/2013/02/05/bash-games/
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-better-bash-scripting

	[Linux Fu: Better Bash Scripting]
	Linux Fu: Better Bash Scripting

