
2025/12/06 03:08 1/2 Linux Fu: Named Pipe Dreams

Qgelm - https://schnipsl.qgelm.de/

Linux Fu: Named Pipe Dreams

Originalartikel

Backup

<html> <p>If you use just about any modern command line, you probably understand the idea of
pipes. Pipes are the ability to connect the output from one program to the input of another. For
example, you can more easily review contents of a large directory on a Linux machine by connecting
two simple commands using a pipe:</p> <pre>ls | less</pre> <p>This command runs

ls

and sends its output to the input of the

less

program. In Linux, both commands run at once and output from ls immediately appears as the input
of less. From the user’s point of view it’s a single operation. In contrast, under regular
old MSDOS, two steps would be necessary to run these commands:</p> <pre>ls >
SOME_TEMP_FILE less < SOME_TEMP_FILE</pre> <p>The big difference is that

ls

will run to completion, saving its output a file. Then the

less

command runs and reads the file. The result is the same, but the timing isn’t.</p> <p>You
may be wondering why I’m explaining such a simple concept. There’s another type of
pipe that isn’t as often used: a named pipe. The normal pipes are attached to a pair of
commands. However, a named pipe has a life of its own. Any number of processes can write to it and
read from it. Learn the ways of named pipes will certainly up your Linux-Fu, so let’s jump
in!</p> <h2>Quick Example: Building a Logging Script</h2> <p>Suppose you want to create a
simple logging facility. Of course, making a daemon that runs all the time is an entirely different
subject, but I’m just going to create a simple and non-robust script. A named pipe can accept
the input lines from other programs and the daemon can timestamp each line and write it to a file.
Here’s the daemon:</p> <pre>#!/bin/bash mkfifo /tmp/nplogpipe while true do

read LINE </tmp/nplogpipe
echo $(date): "$LINE" >>/tmp/nplog.txt

done</pre> <p>The

mkfifo

command creates the named pipe (a first in, first out or FIFO). Older scripts might use

mknod

https://hackaday.com/2019/07/12/linux-fu-named-pipe-dreams/
https://www.qgelm.de/wb2html/wb537.html

Last update:
2021/12/06 15:24 wallabag:linux-fu_-named-pipe-dreams https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-named-pipe-dreams

https://schnipsl.qgelm.de/ Printed on 2025/12/06 03:08

for this purpose and that will work, too. If the pipe already exists, the command will fail, but it
won’t matter. After that, a read waits for input from the pipe. When it arrives, the script
writes out a date and the line to a log file and goes back for more. To test out your quick and dirty
logging system, run the script in the background or in one terminal window. Then in the foreground or
in another terminal try this:</p> <pre>echo The first log entry >/tmp/nplogpipe echo Read
Hackaday every day >/tmp/nplogpipe</pre> <p>You can add a few more lines and then examine
the /tmp/nlog.txt file. It should look something like this:</p> <pre>Sat Jun 29 07:37:44 CDT 2019:
The first log entry Sat Jun 29 07:39:57 CDT 2019: Read Hackaday every day</pre> <h2>The Tricks
are in the Details</h2> <p>One small point: in this case, the read command executes repeatedly in
the loop, but in general when a sender process exits, it will cause the receiving program to also exit.
That isn’t always the behavior you want. The usual way to deal with this is to open the pipe in
a way that will hold the pipe open until it is closed.</p> <p>To observe this effect, try this (with the
daemon running):</p> <pre>ls / >/tmp/nplogpipe</pre> <p>The log will only get the first line of
the ls. That’s because by the time it finishes processing the first line, the ls command exited
and that clears the pipe. Now try this:</p> <pre>exec 3>/tmp/nplogpipe ls / >&3 free
>/tmp/nplogpipe exec 3>&- # close pipe</pre> <p>The first exec line holds the pipe open
until the last line closes it. Once open you can refer to the pipe as &3 or by its full name. Now all
the output will appear in the log file.</p> <p>Another nuance is that the pipe sort of looks like a file.
That means that programs that expect files can usually use pipes. It also means you can control
access to a pipe using the same security mechanisms that work with files (e.g., chmod to set
permissions for a specific user or group).</p> <h2>Why Use Named Pipes?</h2> <p>You might
wonder what advantage these have compared to a regular pipe or a file. Unlike a regular file, the pipe
doesn’t fill up. That also means it has more chance of staying in memory although, of course,
it could get swapped out just like any other memory. In addition, it is easy to have multiple writers to
a named pipe.</p> <p>Of course, there are other issues to worry about. For example, if multiple
programs are writing more than one line of data to the pipe at a time, you’d have to work out
your own scheme to sort them all out. Still, for a quick way to push and collect data between possibly
unrelated processes, named pipes are an easy way to go.</p> <p>By the way, this is the twentieth
installment of Linux Fu! The links below will take to the earlier postings and stay tuned for even more
to come.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-named-pipe-dreams

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-named-pipe-dreams

	[Linux Fu: Named Pipe Dreams]
	Linux Fu: Named Pipe Dreams

