
2025/08/02 11:47 1/5 Linux Fu: Scripting for Binary Files

Qgelm - https://schnipsl.qgelm.de/

Linux Fu: Scripting for Binary Files

Originalartikel

Backup

<html> <p>If you ever need to write a binary file from a traditional language like C, it isn’t
all that hard to do. About the worst thing you might have to deal with is attempts to fake line endings
across Windows and Linux, but there’s usually a way to turn that off if it is on by default.
However, if you are using some type of scripting language, binary file support might be a bit more
difficult. One answer is to use a tool like xxd or t2b (text-to-binary) to handle
the details. You can find the code for t2b on GitHub including prebuilt binaries for many platforms.
You should be able to install xxd from your system repository.</p> <p>These tools take very
different approaches. You might be familiar with tools like od or hexdump for producing readable
representations of binary files. The xxd tool can actually do the same thing — although it is not
as flexible. What xxd can even reverse itself so that it can rebuild a binary file from a hex dump it
creates (something other tools can’t do). The t2b tool takes a much different approach. You
issue commands to it that causes it to write an original hex file.</p> <p>Both of these approaches
have some merit. If you are editing a binary file in a scripting language, xxd makes perfect sense. You
can convert the file to text, process it, and then roll it back to binary using one program. On the other
hand, if you are creating a binary file from scratch, the t2b program has some advantages, too.</p>
<p>I decided to write a few test scripts using bash to show how it all works. These aren’t
production scripts so they won’t be as hardened as they could be, but there is no reason they
couldn’t be made as robust as you were willing to make them.</p> <h2>Cheating a
Little</h2> <p>I decided to write two shell scripts. One will generate an image file. I cheated in two
ways there. First, I picked the PPM (Portable Pix Map) format which is very simple to create. And
second I ignored the format that uses ASCII instead of binary. That’s not strictly cheating
because it does make a larger file, as you’d expect. So there is a benefit to using the binary
format.</p> <p>The other script takes a file in the same format and cuts the color values within it by
half. This shows off both tools since the first job is generating an image file from data and the second
one is processing an image file and writing out a new one. I’ll use t2b for the first job and xxd
for the second.</p> <h2>PPM File Format</h2> <p><img data-
attachment-id=„309835“
data-permalink=„https://hackaday.com/2018/06/22/linux-fu-the-great-power-of-make/tux2/“ data-
orig-file=„https://hackadaycom.files.wordpress.com/2018/05/tux2.png“ data-orig-size=„958,1245“
data-comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„tux2“ data-image-description=„“
data-medium-file=„https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=308“ data-large-
file=„https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=481“ class=„alignright wp-
image-309835 size-thumbnail“
src=„https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=192&h=250“ alt=„“
width=„192“ height=„250“
srcset=„https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=192&h=250 192w,
https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=384&h=500 384w,

https://hackaday.com/2018/06/29/linux-fu-scripting-for-binary-files/
https://www.qgelm.de/wb2html/wb374.html
https://thosakwe.github.io/t2b/index.html
https://hackadaycom.files.wordpress.com/2018/05/tux2.png
https://hackaday.com/2018/06/22/linux-fu-the-great-power-of-make/tux2/
https://hackadaycom.files.wordpress.com/2018/05/tux2.png
https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=308
https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=481
https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=192&h=250
https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=192&h=250
https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=384&h=500

Last update:
2021/12/06
15:24

wallabag:linux-fu_-scripting-for-binary-files https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-scripting-for-binary-files

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:47

https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=308&h=400 308w“
sizes=„(max-width: 192px) 100vw, 192px“/>The PPM format is part of a family of graphics
formats from the 1980s. They are very simple to construct and deconstruct, although they
aren’t known for being small. However, if you needed to create a graphic from a Raspberry Pi
program, it is sometimes handy to create them using this simple file format and then use
ImageMagick or some other tool to convert to a nicer format like PNG.</p> <p>There are actually
three variants of the format. One for black and white, one for grayscale, and another for color. In
addition, each of them can contain ASCII data or binary data. There is a very simple header which is
always in ASCII.</p> <p>We’ll only worry about the color format. The header will start with
the string “P6.” That usually ends with a newline, although defensively, you ought to
allow for any whitespace character to end the header fields. Then the X and Y limits — in
decimal and still in ASCII — appear separated by whitespace. This is usually really a space and
a newline at the end. The next part of the header is another ASCII decimal value indicating the
maximum value for the color components in the image. After that, the data is binary RGB
(red/green/blue) triplets. By the way, if the P6 had been a P3, everything would remain the same, but
the RGB triplets would be in ASCII, not binary. This could be handy in some cases but — as I
mentioned — will result in a larger file.</p> <p>Here’s a sample header with a little
bit of binary data following it:</p> <p><img data-
attachment-id=„312268“
data-permalink=„https://hackaday.com/2018/06/29/linux-fu-scripting-for-binary-files/header-55/“
data-orig-file=„https://hackadaycom.files.wordpress.com/2018/06/header.png“ data-orig-
size=„1037,482“ data-comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„header“ data-image-description=„“ data-medium-
file=„https://hackadaycom.files.wordpress.com/2018/06/header.png?w=400“
data-large-file=„https://hackadaycom.files.wordpress.com/2018/06/header.png?w=800&h=372“
class=„aligncenter wp-image-312268 size-large“
src=„https://hackadaycom.files.wordpress.com/2018/06/header.png?w=800&h=372“ alt=„“
width=„800“ height=„372“
srcset=„https://hackadaycom.files.wordpress.com/2018/06/header.png?w=800&h=372 800w,
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=250&h=116 250w,
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=400&h=186 400w,
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=768&h=357 768w,
https://hackadaycom.files.wordpress.com/2018/06/header.png 1037w“ sizes=„(max-width: 800px)
100vw, 800px“/></p> <p>The green text represents hex numbers and the other boxes contain
ASCII characters. You can see the first 15 bytes are header and after that, it is all image data.</p>
<h2>T2B</h2> <p>The t2b program takes a variety of commands to generate output. You can write
a string or various sizes of integers. You can also do things like repeat output a given number of times
and even choose what to output based on conditions. There’s a way to handle variables and
even macros.</p> <p>As an example, my script will write out an image with three color bars in it.
The background will be black with a white border. The color bars will automatically space to fit the
box. I won’t use too many of the t2b features, but I did like using the macros to make
the resulting output easier to read. Here’s the code for creating the header (with
comments added):</p> <pre class=„brush: bash; title: ; notranslate“ title=„“> strl P6 # Write P6
followed by a newline (no quotes needed because no whitespace in the string) str $X # Write the X
coordinate (no newline) u8 32 # a space strl $Y # The Y coordinate (with newline) strl 255 #

https://hackadaycom.files.wordpress.com/2018/05/tux2.png?w=308&h=400
https://hackadaycom.files.wordpress.com/2018/06/header.png
https://hackaday.com/2018/06/29/linux-fu-scripting-for-binary-files/header-55/
https://hackadaycom.files.wordpress.com/2018/06/header.png
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=400
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=800&h=372
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=800&h=372
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=800&h=372
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=250&h=116
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=400&h=186
https://hackadaycom.files.wordpress.com/2018/06/header.png?w=768&h=357
https://hackadaycom.files.wordpress.com/2018/06/header.png

2025/08/02 11:47 3/5 Linux Fu: Scripting for Binary Files

Qgelm - https://schnipsl.qgelm.de/

Maximum subpixel value (ASCII) </pre> <p>That’s all there is to it. The RGB triples use the
u8 command, although you could probably use a 24-bit command, too. I also set up some macros for
the colors I used:</p> <pre class=„brush: bash; title: ; notranslate“ title=„“> macro RED

begin
 u8 255
 times 2 u8 0
 endtimes

endmacro </pre> <p>Once you have the t2b language down, the rest is just math. You can find the
complete code on GitHub,
but you’ll see it just computes 7 equal-sized regions and draws different colors as it runs
through each pixel in a nested set of for loops. There’s also a one-pixel white border around
the edges for no good reason.</p> <p>When you want to run the code you can either specify the X
and Y coordinates or take the 800×600 default:</p> <pre> ./colorbar.sh 700 700 | t2b
>outputfile.ppm </pre> <p>If you intercept the output before the t2b program, you’ll see
the commands rolling out of the script. Here’s the default output to the ppm file:</p> <p><img data-
attachment-id=„312253“
data-permalink=„https://hackaday.com/2018/06/29/linux-fu-scripting-for-binary-files/test1/“ data-orig-
file=„https://hackadaycom.files.wordpress.com/2018/06/test1.png“ data-orig-size=„800,600“ data-
comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„test1“ data-image-description=„“
data-medium-
file=„https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=400&h=300“ data-large-
file=„https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=800“ class=„aligncenter wp-
image-312253 size-medium“
src=„https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=400&h=300“ alt=„“
width=„400“ height=„300“
srcset=„https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=400&h=300 400w,
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=250&h=188 250w,
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=768&h=576 768w,
https://hackadaycom.files.wordpress.com/2018/06/test1.png 800w“ sizes=„(max-width: 400px)
100vw, 400px“/></p> <h2>Shades of Gray</h2> <p>The other script is a little different. The
goal is to divide all the color values in a PPM file in half. If it were just binary data, that would be easy
enough, but you need to skip the header so as not to corrupt it. That takes a little extra work. I used
gawk (GNU awk) to make the work a little simpler.</p> <p>The code expects output from xxd, which
looks like this:</p> <pre class=„brush: bash; title: ; notranslate“ title=„“> 00000000: 5036 0a38
3030 2036 3030 0a32 3535 0aff P6.800 600.255.. 00000010: ffff ffff ffff ffff ffff ffff ffff ffff …………….
00000020: ffff ffff ffff ffff ffff ffff ffff ffff ……………. 00000030: ffff ffff ffff ffff ffff ffff ffff ffff …………….
00000040: ffff ffff ffff ffff ffff ffff ffff ffff ……………. </pre> <p>The address isn’t important to
us. You can ask xxd to suppress it, but it is also easy to just skip it. The character representations to
the right aren’t important either. The xxd program will ignore that when it rebuilds the binary.
Here’s the code in awk (which is embedded in the shell
script):</p> <pre class=„brush: bash; title: ; notranslate“ title=„“> # need to find 4 white
space fields BEGIN { noheader=4 }

https://github.com/wd5gnr/binaryscript
https://hackadaycom.files.wordpress.com/2018/06/test1.png
https://hackaday.com/2018/06/29/linux-fu-scripting-for-binary-files/test1/
https://hackadaycom.files.wordpress.com/2018/06/test1.png
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=400&h=300
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=800
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=400&h=300
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=400&h=300
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=250&h=188
https://hackadaycom.files.wordpress.com/2018/06/test1.png?w=768&h=576
https://hackadaycom.files.wordpress.com/2018/06/test1.png
https://github.com/wd5gnr/binaryscript/blob/master/half.sh

Last update:
2021/12/06
15:24

wallabag:linux-fu_-scripting-for-binary-files https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-scripting-for-binary-files

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:47

 {
 lp=1
 }
 {
 split($0, chars, "")

skip initial address

 while (chars[lp++]!=":");
 n=0; # # of bytes read

get two characters

 while (n<16 && lp<length(chars)) { # heuristically two space
characters out of xxd ends the hex dump line (ascii follows) if (chars[lp] ~
/[\t\n\r]/) { if (chars[++lp] ~ /[\t\n\r]/) { break; # no need to look at
rest of line } } b=chars[lp++] chars[lp++]; n++; # if header then skip white
space if (noheader>0) {
 if (b=="20" || b=="0a" || b=="0d" || b=="09") noheader--;
 }
 else {
 # if not header than /2
 bn=strtonum("0x" b)/2;
 bs=sprintf("%02x",bn);
 chars[lp-2]=substr(bs,1,1);
 chars[lp-1]=substr(bs,2,1);
 }
}

recombine array and print

p=""
for (i=1;i<=length(chars);i++) p=p chars[i];
print p
}

</pre> <p>The awk code simply skips the address and then pulls up to 16 items from a line of data.
The first task is to count whitespace characters to skip over the header. I made the assumption that
there would not be runs of whitespace, although a more robust program would probably consume
multiple spaces (easy to fix). After that, each byte gets divided and reassembled. This task is more
character oriented and awk doesn’t handle characters well without a trick.</p> <p><img data-
attachment-id=„312269“
data-permalink=„https://hackaday.com/2018/06/29/linux-fu-scripting-for-binary-files/fifty-2/“ data-
orig-file=„https://hackadaycom.files.wordpress.com/2018/06/fifty.png“ data-orig-size=„800,600“
data-comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0

https://hackadaycom.files.wordpress.com/2018/06/fifty.png
https://hackaday.com/2018/06/29/linux-fu-scripting-for-binary-files/fifty-2/
https://hackadaycom.files.wordpress.com/2018/06/fifty.png

2025/08/02 11:47 5/5 Linux Fu: Scripting for Binary Files

Qgelm - https://schnipsl.qgelm.de/

","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„fifty“ data-image-description=„“
data-medium-file=„https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=400“ data-large-
file=„https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=800“ class=„alignleft size-
thumbnail wp-image-312269“
src=„https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=250&h=188“ alt=„“
width=„250“ height=„188“
srcset=„https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=250&h=188 250w,
https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=500&h=376 500w,
https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=400&h=300 400w“ sizes=„(max-
width: 250px) 100vw, 250px“/>In particular, I used the split command to convert the current line
into an array with each element containing a character. This includes any whitespace characters
because I used an empty string as the split delimiter:</p> <pre> split($0, chars, „“) </pre>
<p>After processing the array — which isn’t hard to do — you can build a new
string back like this:</p> <pre> p=„“ for (i=1;i<=length(chars);i++) p=p chars[i]; </pre> <p>The
output file will feed back to xxd with the -r option and you are done:</p> <pre> xxd infile.ppm |
./half.sh | xxd -r >outfile.ppm </pre> <h2>Two is the Loneliest</h2> <p>This is a great example
of how the Unix philosophy makes it possible to build tools that are greater than the sum of their
parts. A simple program changes a text-processing language like awk into a binary file manipulation
language. Great. By the way, if your idea of manipulating binary is Intel hex or Motorola S records, be
sure to check out the srec_cat and related software which can manipulate those, too.</p> <p>Once
you have a bunch of binary files, you might appreciate an online hex editor. By the
way, a couple of years ago, I mentioned using od to process
binary files in awk. That’s still legitimate, of course, but xxd allows you to go both ways,
which is a lot more useful.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-scripting-for-binary-files

Last update: 2021/12/06 15:24

https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=400
https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=800
https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=250&h=188
https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=250&h=188
https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=500&h=376
https://hackadaycom.files.wordpress.com/2018/06/fifty.png?w=400&h=300
https://hackaday.com/2017/07/27/edit-hex-in-the-browser/
https://hackaday.com/2015/04/02/manual-data-recovery-with-a-hex-editor/
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:linux-fu_-scripting-for-binary-files

	[Linux Fu: Scripting for Binary Files]
	Linux Fu: Scripting for Binary Files

