
2025/10/05 00:07 1/8 Optimizing Linux for Slow Computers | AkitaOnRails.com

Qgelm - https://schnipsl.qgelm.de/

Optimizing Linux for Slow Computers | AkitaOnRails.com

Originalartikel

Backup

<html> <h3>It's about Responsiveness, not performance!</h3><p>Most people's concerns are first
about performance, and this is a mistake. Linux is plenty fast, but for many people it doesn't feel like
so in the Desktop.</p> <p>When tuning a server, you'll really want to tweak for performance and
high throughput. That's where most Linux configurations really shine over the competition: they come
better tuned to get the most out of server configurations.</p> <p>But in a Desktop you don't want
that. For example, you're copying a 20GB file to your old USB thumb drive, or you're unzipping a large
file, or you're compiling that large package from source, or you leave Dropbox in the background
syncing gigabytes of files from their servers. Or you're doing „nothing“ (in the foreground at least, but
Gnome Tracker is heavily indexing your files in the background) and your environment stutters, hangs
for a few seconds, and keeps doing that every so often.</p> <p>And you're left wondering why Linux
is so bad compared to Windows or macOS where you don't see the same behavior on similar
hardware.</p> <blockquote readability=„4“><p>There is a term that is still misunderstood:
real-time.</p></blockquote> <p>Being real-time does not mean „computing
super fast“, it means „being predictable“. If something needs to happen in a certain frequency, it
doesn't matter if each cycle takes 1 second as long as it consistently takes the same 1 second - in all
deadlines. If you have a „fast“ machine that computes faster at 10 milliseconds every cycle, but every
so often, randomly hangs for a couple of seconds, this is not real-time. And for media creation, it's a
disaster.</p> <p>There is hard real-time where one peak or valley can be considered a catastropic
failure, and soft real-time where you can handle a few peaks, but not so much. Hard real time
requirements are rare, unless you're developing systems for nuclear plants you may miss a few
deadlines.</p> <p>Most responsiveness issues are related to soft real-time situations. You can
handle a few sparse peaks here and there, but no more than a few. And this is how you should do
your research: not Googling for „linux performance“ but for „linux real-time“ or „linux
responsiveness“.</p> <p>You will also find that there are niche professionals with special distros just
for audio recording and editing, for example <a
href=„http://libremusicproduction.com/articles/advantages-choosing-audio-orientated-linux-distributio
n“>AVLinux or KXStudio.</p> <p>macOS is particularly good for media creators precisely
because it's highly tuned for soft real-time, which is critical for software such as Logic Pro. And for the
same reason, it's poor server OS. You will notice that the default Quicktime screen recording is super
smooth, you rarely see stutters.</p> <p>But you don't need to use an audio specific distro or a hard
real-time kernel. Critical audio distros don't use PulseAudio, but normal users will not be so concerned
about it. We can tune it to find a good balance between responsiveness and performance. If you really
want to go hard-core, you may want to read the Linux Audio Wiki on Real Time, but it's out
of the scope of this article.</p> <h3>What are the real Bottlenecks?</h3> <p>A „slow“ computer is
not necessarily sporting old CPUs. I am doing my tests on a very old Lenovo Thinkcentre Edge 71z
tower desktop. It has an old 2nd generation Intel Core 2.4Ghz 4 cores SandyBridge CPU. We just saw
the release of the 7th generation Kaby Lake processors, so one might assume that nothing would run
on such an old CPU, but you would be wrong.</p> <p>CPU is usually not serious a bottleneck unless
you're doing really intensive computation, such as video compression, data sciences, genetics, neural
networks, etc.</p> <p>For a casual user or even a heavy-weight developer, any processor better
than the 1st generation Intel Core series is plenty.</p> <p>GPU is also rarely a bottleneck unless
you're doing heavy gaming or 4K renderings. Most of the time you don't really need a USD 7000
dedicated GTX 1080.</p> <p>By the way, this is not necessary for most systems, but just to be on

http://www.akitaonrails.com/2017/01/17/optimizing-linux-for-slow-computers
https://www.qgelm.de/wb2html/wb69.html
http://libremusicproduction.com/articles/advantages-choosing-audio-orientated-linux-distribution
http://libremusicproduction.com/articles/advantages-choosing-audio-orientated-linux-distribution
http://wiki.linuxaudio.org/wiki/real_time_info

Last
update:
2021/12/06
15:24

wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com https://schnipsl.qgelm.de/doku.php?id=wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com

https://schnipsl.qgelm.de/ Printed on 2025/10/05 00:07

the safe side do this:</p> <table class=„CodeRay“ readability=„0“><tr readability=„1“><td
class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style) { display = (display
==) ? 'none' : }“><pre>1<tt> </tt>2<tt> </tt></pre></td>

<td class="code" readability="4"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">sudo pacman -S mesa-demos<tt>

</tt>glxinfo | grep direct<tt> </tt></pre></td> </tr></table><p>You should see

direct rendering: Yes

. If not, refer to your distro documentation, because this means you're not compositing through the
GPU and you're wasting CPU cycles rendering your screen!</p> <p>If you try to measure your CPU
and GPU usages, you will realize that most of the time they are actually idle! That's right, you're
mostly underusing your machine cores.</p> <p>The bottleneck usually boils down to I/O.</p>
<h3>RAM vs SWAP</h3> <p>Now, you're opening your shiny Chromium browser. Anyone fooling
around for a few minutes will open an average of a dozen or more tabs, without breaking a
sweat.</p> <p>It's super easy to eat up all 8GB of the average machines. Whenever that happens,
the OS will have to start offloading data to disk, which is orders of magnitude slow.</p> <p>If
application data is offloaded to disk and you alt-tab to it later, the OS will reach a „page fault“, and it
will have to load from disk, from the swap file/partition. And again, this will have the effect of blocking
your actions. The environment may stutter for a second or more, making it
unresponsive.</p> <p>The very first thing you may want to do is install an
extension such as <a
href=„https://chrome.google.com/webstore/detail/the-great-suspender/klbibkeccnjlkjkiokjodocebajana
kg?hl=en“>The Great Suspender. It will simply close all tabs but the one you're reading right
now. When you change to another tab it will reload it. The effect is that you're not using RAM if you
really don't need to.</p> <p><img
src=„https://lh6.googleusercontent.com/PCpWlL8C4bi0yPT1zvOmRwZFd1BaweIiwSw9hmJoUZ4BDA9I
nMR_fEaC4XNrFTyWW2m_yC8HIw=s640-h400-e365“
srcset=„https://lh6.googleusercontent.com/PCpWlL8C4bi0yPT1zvOmRwZFd1BaweIiwSw9hmJoUZ4BD
A9InMR_fEaC4XNrFTyWW2m_yC8HIw=s640-h400-e365 2x“ alt=„The Great Suspender“/></p>
<p>This extension alone can save you a couple of GIGABYTES of RAM, which is no small thing if you
have 8GB or less.</p> <p>The other thing to consider is that Linux comes pre-configured to balance
out offloading application data to swap to accomodate filesystem cache. So, if you're unzipping a
large file, some of that data will go to RAM cache and application data will move to the disk. After you
finish unzipping, you alt-tab to applications and boom: page faults, unresponsiveness.</p> <p>So
you want to configure the OS to more aggressively keep your application state in RAM, and <a
href=„https://rudd-o.com/linux-and-free-software/tales-from-responsivenessland-why-linux-feels-slow-
and-how-to-fix-that“>this is how you do it:</p> <table class=„CodeRay“ readability=„0“><tr
readability=„1“><td class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style)
{ display = (display ==) ? 'none' : }“><pre>1<tt> </tt>2<tt> </tt>3<tt> </tt>4<tt>
</tt></pre></td>

<td class="code" readability="4"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">sudo tee -a /etc/sysctl.d/99-sysctl.conf <<-EOF<tt>

https://chrome.google.com/webstore/detail/the-great-suspender/klbibkeccnjlkjkiokjodocebajanakg?hl=en
https://chrome.google.com/webstore/detail/the-great-suspender/klbibkeccnjlkjkiokjodocebajanakg?hl=en
https://lh6.googleusercontent.com/PCpWlL8C4bi0yPT1zvOmRwZFd1BaweIiwSw9hmJoUZ4BDA9InMR_fEaC4XNrFTyWW2m_yC8HIw=s640-h400-e365
https://lh6.googleusercontent.com/PCpWlL8C4bi0yPT1zvOmRwZFd1BaweIiwSw9hmJoUZ4BDA9InMR_fEaC4XNrFTyWW2m_yC8HIw=s640-h400-e365
https://lh6.googleusercontent.com/PCpWlL8C4bi0yPT1zvOmRwZFd1BaweIiwSw9hmJoUZ4BDA9InMR_fEaC4XNrFTyWW2m_yC8HIw=s640-h400-e365
https://lh6.googleusercontent.com/PCpWlL8C4bi0yPT1zvOmRwZFd1BaweIiwSw9hmJoUZ4BDA9InMR_fEaC4XNrFTyWW2m_yC8HIw=s640-h400-e365
https://rudd-o.com/linux-and-free-software/tales-from-responsivenessland-why-linux-feels-slow-and-how-to-fix-that
https://rudd-o.com/linux-and-free-software/tales-from-responsivenessland-why-linux-feels-slow-and-how-to-fix-that

2025/10/05 00:07 3/8 Optimizing Linux for Slow Computers | AkitaOnRails.com

Qgelm - https://schnipsl.qgelm.de/

</tt>vm.swappiness=1<tt> </tt>vm.vfs_cache_pressure=50<tt> </tt>EOF<tt> </tt></pre></td>
</tr></table><p>While on the topic of storage, you will find some older kernels making your
machine become unresponsive when dealing with <a
href=„http://unix.stackexchange.com/questions/107703/why-is-my-pc-freezing-while-im-copying-a-file
-to-a-pendrive/107722#107722“>slower storage, such as USB drives or SD cards. This is how
you tweak it:</p> <table class=„CodeRay“ readability=„1“><tr readability=„3“><td
class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style) { display = (display
==) ? 'none' : }“><pre>1<tt> </tt>2<tt> </tt>3<tt> </tt>4<tt> </tt></pre></td>

<td class="code" readability="5"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">sudo tee -a /etc/sysctl.d/99-sysctl.conf <<-EOF<tt>

</tt>vm.dirty_background_bytes=16777216<tt> </tt>vm.dirty_bytes=50331648<tt>
</tt>EOF<tt> </tt></pre></td> </tr></table><p>If you don't want to reboot right now, you can
run this in a Terminal:</p> <table class=„CodeRay“ readability=„1“><tr readability=„3“><td
class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style) { display = (display
==) ? 'none' : }“><pre>1<tt> </tt>2<tt> </tt>3<tt> </tt>4<tt> </tt></pre></td>

<td class="code" readability="5"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">sudo sysctl -w vm.swappiness=1<tt>

</tt>sudo sysctl -w vm.vfs_cache_pressure=50<tt> </tt>sudo sysctl -w
vm.dirty_background_bytes=16777216 <tt> </tt>sudo sysctl -w vm.dirty_bytes=50331648<tt>
</tt></pre></td> </tr></table><p>Don't go too far on tuning, for example, never disable a file
system journaling. It increases performance at the risk of putting your data in risk of corruption.</p>
<h3>Schedulers</h3> <p>Why was „Linux not ready for the Desktop“ years ago?</p> <p>Because
it took too many years to finally start tackling low latency, inexpensive thread switching, better
scheduling. You have to thank Con Kolivas,
Ingo Molnár, Thomas
Gleixner. The Linux kernel development is known to be super difficult to deal with and Con
Kolivas is one of its victims, but his work live on to allow us to have better Desktop experiences these
days.</p> <p>There are Process Schedulers and I/O Schedulers. The first is responsible to manage
the Preemption of the
kernel, how it switches between different computational tasks, the low-level equivalent of you „alt-
tabbing“ through apps, so to speak.</p> <p>I/O Schedulers deal with sharing slow I/O resources with
competing processes needing to read from disk, write to RAM, etc.</p> <p>The recent history of
process scheduler for the Desktop boils down to Con Kolivas' works on fair scheduling, leading to Ingo
Mólnar's Completely Fair Scheduler (CFS) which is the default in most distros nowadays and the
continuing work of Kolivas on Staircase, Rotating Staircase Deadline, Staircase Deadlineee, Brain Fuck
Scheduler (BFS), and the most recent Multiple Queue Skiplist Scheduler (MuQSS).</p> <p>Then
there are I/O Schedulers. For the most part you will be dealing with the Completely Fair Queueing
(CFQ). Most development on this side is attributed to Jens Axboe, also responsible for the Deadline
Scheduler and Noop Scheduler. Then there is the controversial evolution called Budget Fair Queueing
(BFQ).</p> <p>When you have SSDs (and this is why you want SSDs), you will more likely choose
NOOP (or <a href=„https://wiki.debian.org/SSDOptimization#Low-Latency_IO-
Scheduler“>Deadline) just because there is no need to waste computation time managing
complex I/O queues for SSDs as they can easily handle up to tens of thousands of I/O operations
concurrently without breaking a sweat.</p> <p>But if you have to use mechanical hard-drives,

http://unix.stackexchange.com/questions/107703/why-is-my-pc-freezing-while-im-copying-a-file-to-a-pendrive/107722#107722
http://unix.stackexchange.com/questions/107703/why-is-my-pc-freezing-while-im-copying-a-file-to-a-pendrive/107722#107722
https://en.wikipedia.org/wiki/Con_Kolivas
https://en.wikipedia.org/wiki/Ingo_Moln%C3%A1r
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://algo.ing.unimo.it/people/paolo/disk_sched/bfq-history.php
https://wiki.debian.org/SSDOptimization#Low-Latency_IO-Scheduler
https://wiki.debian.org/SSDOptimization#Low-Latency_IO-Scheduler

Last
update:
2021/12/06
15:24

wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com https://schnipsl.qgelm.de/doku.php?id=wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com

https://schnipsl.qgelm.de/ Printed on 2025/10/05 00:07

particularly the old and super slow 5.400rpm ones, you will want to manage the I/O queue efficiently,
touching the spinning plates as little as possible. And in this case, you will really want to use
something like BFQ (or at least leave it at the default CFQ).</p> <p>You can check which I/O
Scheduler you're running like this:</p> <table class=„CodeRay“ readability=„0“><tr
readability=„1“><td class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style)
{ display = (display ==) ? 'none' : }“><pre>1<tt> </tt>2<tt> </tt></pre></td>

<td class="code" readability="4"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto' }">$
cat /sys/block/sda/queue/scheduler<tt>

</tt>noop deadline cfq [bfq] <tt> </tt></pre></td> </tr></table><p>In the example above you
will see that

[bfq]

is the one active, but you can change it on the fly to test it out if you want.</p> <p>To take
advantage of those newest schedulers to better optimize slow computers, your best bet is to install
Linux Zen kernel, a version of Liquorix. It includes de MuQSS
scheduler instead of CFS and BFQ instead of CFQ, while also adding more tweaks for responsiveness
like proper QoS over TCP to avoid TCP congestion.</p> <p>In Arch Linux it's a simple thing to
do:</p> <table class=„CodeRay“ readability=„0“><tr readability=„1“><td class=„line_numbers“
title=„click to toggle“ onclick=„with (this.firstChild.style) { display = (display ==) ? 'none' :
}“><pre>1<tt> </tt>2<tt> </tt></pre></td>

<td class="code" readability="4"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">sudo pacman -Sy linux-zen<tt>

</tt>sudo grub-mkconfig -o /boot/grub/grub.cfg<tt> </tt></pre></td> </tr></table><p>For
Ubuntu, you may want to refer to Liquorix's Install Page
as it depends on your CPU, but most likely you will install on 64-bit machines:</p> <table
class=„CodeRay“ readability=„1“><tr readability=„3“><td class=„line_numbers“ title=„click to
toggle“ onclick=„with (this.firstChild.style) { display = (display ==) ? 'none' : }“><pre>1<tt>
</tt>2<tt> </tt></pre></td>

<td class="code" readability="5"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">sudo apt-get install liquorix-keyring<tt>

</tt>apt-get install linux-image-liquorix-amd64 linux-headers-liquorix-amd64<tt> </tt></pre></td>
</tr></table><h3>Is GNOME 3 too slow?</h3> <p>I always heard that GNOME and even KDE are
too slow, you should just use XFCE (or LXQt, or MATE).</p> <p>And it always striked me as one of
those things people just keep repeating until it becomes the official canon.</p> <p>As an engineer, I
dislike thinking that way. Defying the canon is more like what an engineer should do.</p>
<p>GNOME 3.22 is an ever evolving environment and ecosystem. It's good looking by default, no
need to tweak it too much. And it has several built-in conveniences such as GNOME Online Accounts,
Tracker for indexing files and making them easily searchable, GNOME Photos that sync from Google
Photos, and so on. Every nicety we like about a system like macOS.</p> <p>Convenience is a trade-

https://liquorix.net/
https://liquorix.net/#install

2025/10/05 00:07 5/8 Optimizing Linux for Slow Computers | AkitaOnRails.com

Qgelm - https://schnipsl.qgelm.de/

off of performance and responsiveness. So high-end machines will benefit from the convenience and
old machines will suffer because of the extra „bloat“ in the background.</p> <p>How do you
maintain some of the convenience on old hardware?</p> <p>Again, you must understand what's
going on. The first thing you must install is htop and iotop.
The first is good to see what processes running in the background may be eating up your CPU or RAM.
The second is good to see what processes are bloating your I/O queues doing background file/network
operations.</p> <p>What I found out in my system were 2 main offenders: Dropbox and
Tracker.</p> <p><img
src=„https://d7v6meks67904.cloudfront.net/assets/image_asset/image/606/Screenshot_from_2017-01
-17_16-15-32.png“
srcset=„https://d7v6meks67904.cloudfront.net/assets/image_asset/image/606/Screenshot_from_2017
-01-17_16-15-32.png 2x“ alt=„iotop“/></p> <p>Dropbox is optional, but most people nowadays use
it. Out of the box it is a hidious monster, one of the worst pieces of software you're obligated to live
with.</p> <p>The first time you install and it has to download everything, your machine will go down
to its knees. Nothing to do about that, just remember to install it Friday night and leave it running in
the office over the weekend.</p> <p>Then, edit the

/usr/share/applications/dropbox.desktop

and replace the

Exec=dropbox

line with this:</p> <table class=„CodeRay“ readability=„0“><tr readability=„1“><td
class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style) { display = (display
==) ? 'none' : }“><pre>1<tt> </tt></pre></td>

<td class="code" readability="4"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">Exec=ionice -c 3 -n 7 dropbox start -i && cpulimit -b -e dropbox
-l 10<tt>

</tt></pre></td> </tr></table><p>This „should“ tune down Dropbox to have the least amount of
CPU time and only have I/O when the system is idle.</p> <p>Another way is to install Ananicy. It is a
daemon that promises to automatically set NICE and IOCLASS of selected processes just like using

ionice

and

cpulimit

above. You can install it in Arch like this:</p> <table class=„CodeRay“ readability=„0“><tr
readability=„1“><td class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style)
{ display = (display ==) ? 'none' : }“><pre>1<tt> </tt></pre></td>

<td class="code" readability="4"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">sudo pacaur -S ananicy-git<tt>

https://d7v6meks67904.cloudfront.net/assets/image_asset/image/606/Screenshot_from_2017-01-17_16-15-32.png
https://d7v6meks67904.cloudfront.net/assets/image_asset/image/606/Screenshot_from_2017-01-17_16-15-32.png
https://d7v6meks67904.cloudfront.net/assets/image_asset/image/606/Screenshot_from_2017-01-17_16-15-32.png
https://d7v6meks67904.cloudfront.net/assets/image_asset/image/606/Screenshot_from_2017-01-17_16-15-32.png
https://github.com/Nefelim4ag/Ananicy/blob/master/README.md

Last
update:
2021/12/06
15:24

wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com https://schnipsl.qgelm.de/doku.php?id=wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com

https://schnipsl.qgelm.de/ Printed on 2025/10/05 00:07

</tt></pre></td> </tr></table><p>And if you

cat /etc/ananicy.d/dropbox.rules

you will see a rule set like this:</p> <table class=„CodeRay“ readability=„0“><tr
readability=„1“><td class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style)
{ display = (display ==) ? 'none' : }“><pre>1<tt> </tt>2<tt> </tt></pre></td>

<td class="code" readability="4"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto' }">#
Dropbox client: https://www.dropbox.com<tt>

</tt>NAME=dropbox NICE=19 IOCLASS=idle<tt> </tt></pre></td> </tr></table><p>Which is
basically what we did in the

Exec

line tweak. I didn't test Ananicy enough but if it does what's promised, it's even easier as it comes
with pre-configured rules for applications such as make, VLC, transmission, etc.</p> <p>Then, there
is Tracker. The purpose of this tool is to index your files so you can search them
fast and easily through GNOME applications such as the Nautilus File Manager.</p> <p>Again, the
first time you install your new GNOME environment it will be very expensive to build the first index
pass, specially if you're downloading tons of files from Dropbox. Do it on a Friday night!</p> <p>But
you should also tune it down to only run when your system is idle. Run Alt-F2 and type

tracker-preferences

, then configure it to look like this:</p> <p><img
src=„https://d7v6meks67904.cloudfront.net/assets/image_asset/image/605/Screenshot_from_2017-01
-17_15-32-38.png“
srcset=„https://d7v6meks67904.cloudfront.net/assets/image_asset/image/605/Screenshot_from_2017
-01-17_15-32-38.png 2x“ alt=„tracker-preferences“/></p> <p>In the same applet, also configure it
to ignore

log

directories and

*.log

file patterns!</p> <p>Only those 2 things should make your machine WAY more responsive when
using slow mechanical drives. I noticed that

gnome-photos

keeps running in the background and consuming some I/O, it is probably trying to sync your online
photos from Google if you set GNOME Online Accounts.</p>
<blockquote readability=„9“><p>Dropbox, Tracker, Gnome-Photos, will all cause your initial

https://d7v6meks67904.cloudfront.net/assets/image_asset/image/605/Screenshot_from_2017-01-17_15-32-38.png
https://d7v6meks67904.cloudfront.net/assets/image_asset/image/605/Screenshot_from_2017-01-17_15-32-38.png
https://d7v6meks67904.cloudfront.net/assets/image_asset/image/605/Screenshot_from_2017-01-17_15-32-38.png
https://d7v6meks67904.cloudfront.net/assets/image_asset/image/605/Screenshot_from_2017-01-17_15-32-38.png
https://wiki.gnome.org/Projects/GnomeOnlineAccounts

2025/10/05 00:07 7/8 Optimizing Linux for Slow Computers | AkitaOnRails.com

Qgelm - https://schnipsl.qgelm.de/

experience to suck. But if you have patience - and a fast internet connection - they should settle down
after the initial heavy sync.</p></blockquote> <p>GNOME has other services in the background,
namely:</p> <table class=„CodeRay“ readability=„1“><tr readability=„3“><td
class=„line_numbers“ title=„click to toggle“ onclick=„with (this.firstChild.style) { display = (display
==) ? 'none' : }“><pre>1<tt> </tt>2<tt> </tt>3<tt> </tt>4<tt> </tt>5<tt> </tt>6<tt>
</tt></pre></td>

<td class="code" readability="5"><pre ondblclick="with (this.style) {
overflow = (overflow == 'auto' || overflow == '') ? 'visible' : 'auto'
}">gnome-session<tt>

</tt>gnome-shell<tt> </tt>gnome-settings-daemon<tt> </tt>gnome-online-accounts<tt>
</tt>evolution-data-server<tt> </tt>gjs-console<tt> </tt></pre></td> </tr></table><p>There
must be more depending on optional apps you installed. Gnome-Shell and GJS are easily the worst of
the bunch. You can't do much about them because they're the Core of GNOME. GJS in particular
enables Javascript-based extensions and everything Javascript is slow. The only thing you can do is
avoid installing too many GNOME Extensions.</p> <p>By the way, if you install XFCE along-side
GNOME, you may be surprised that many of the same background services will start up in the
background! Install one or the other, not both in the same system.</p> <p>On the other hand, a
bare-bone Arch install with the XFCE4 package set will start up consuming around 150MB of RAM!!
But of course, you lose all the niceties that comes pre-installed with GNOME. And also of course: you
start Chromium, open a few tabs, and there goes all the RAM anyway.</p> <p>If your goal is just to
save resources, the choice is not between XFCE or LXQt, it is between having Facebook permanently
opened in a browser tab or not. The reality is that the main offender of RAM is the Web as a whole.
Half a dozen tabs and you eat up more than 1 Gigabyte, and it keeps going up. That's why my main
first recommendation is to install The Great Suspender.</p> <p>You will run far worst apps in the
foreground. For example, Spotify, Franz, Atom, to name a few. If it's a hybrid app that load a browser
to load a web application, it is going to be heavy.</p> <p>And I'd choose a forward
thinking desktop manager that already supports Wayland/Weston instead of X11. You do want to
throw away the <a
href=„http://www.phoronix.com/scan.php?page=article&item=x_wayland_situation&num=1
“>bad X11 legacy as soon as possible.</p> <h3>Summary</h3> <p>As a shorter TL;DR
remember to do the following:</p> Tune your swappiness and cache pressure settings to
avoid page faults when using your foreground applications. It's a trade-off of performance vs
responsiness. Install the Linux-Zen or Liquorix kernels (depending on your distro) to have
access to the better MuQSS process scheduler and BFQ I/O schedulers. If you're using an SSD you will
want to check if you're using NOOP or Deadline I/O schedulers instead. Also check for TRIM support.
Make Dropbox and Tracker play nice with your system. Configure both to only run when You are
not using the system (when idle). Maybe install Ananicy and rejoice. Do not choose a
Desktop Manager because of performance concerns. If you're using Chromium or other web based
applications, you're already doomed. So don't panic and use GNOME 3.22. <p>When I
installed both Fedora 25 and Arch Linux I felt them sluggish. When I used Ubuntu 14.04 for months in
a better hardware, I also felt it sluggish compared to macOS in similar hardware, but I never
attempted this level of tunig before.</p> <p>The main reason being the heavy initial sync of
applications such as Dropbox, Tracker, Gnome-Photos.</p> <p>The second reason is the better
tuning of I/O scheduling and Swap settings because of the use of a mechanical harddrive. If you use
an SSD you probably don't suffer nearly as much.</p> <p>Bottomline: if you can, buy a good SSD. If
you have PCI Express x4, then do even better and buy a M.2 SSD such as the Samsu

https://wiki.archlinux.org/index.php/wayland#Window_managers_and_desktop_shells
http://www.phoronix.com/scan.php?page=article&item=x_wayland_situation&num=1
https://wiki.archlinux.org/index.php/Solid_State_Drives#TRIM
http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/950pro.html

Last
update:
2021/12/06
15:24

wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com https://schnipsl.qgelm.de/doku.php?id=wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com

https://schnipsl.qgelm.de/ Printed on 2025/10/05 00:07

ng 950 EVO M.2. The best thing you can do is have more than 8GB of RAM (16GB being a good
sweet spot) and a really fast SSD (preferably with a BUS that don't suffer from SATA 3's
bottlenecks).</p> <p>With all the tweaks and tunings, I am happy to report that my years old
Lenovo tower is running as smoothly as it can, being responsive enough even in higher loads, with
this shit slow mechanical hard drive. And as a bonus, if you choose to stay in GNOME 3, install the
nice Flat Plat theme, heavily inspired by Material
Design, and the Paper or Moka icon sets.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com

Last update: 2021/12/06 15:24

https://github.com/nana-4/Flat-Plat
https://snwh.org/paper
https://snwh.org/moka
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:optimizing-linux-for-slow-computers-_-akitaonrails.com

	[Optimizing Linux for Slow Computers | AkitaOnRails.com]
	Optimizing Linux for Slow Computers | AkitaOnRails.com

