
2025/08/02 11:59 1/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

Overview | Adafruit GFX Graphics Library

Originalartikel

Backup

<html> <div class=„page-content all-page-view-content“ readability=„49“> <div class=„row-fluid
build-image“><img class=„1304-asset img-
responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium260/lcds___displays_ID797t
ri_LRG.jpg?1396770841 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium640/lcds___displays_ID797tri_LRG.jp
g?1396770841 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium800/lcds___displays_ID797tri_LRG.jp
g?1396770841 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/304/large1024/lcds___displays_ID797tri_LRG.jpg
?1396770841 1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium800/lcds___displays_ID797tri_L
RG.jpg?1396770841“ alt=„lcds_displays_ID797tri_LRG.jpg“/></div> <p>The Adafruit_GFX
library for Arduino provides a common syntax and set of graphics functions for all of our LCD and
OLED displays. This allows Arduino sketches to easily be adapted between display types with minimal
fuss…and any new features, performance improvements and bug fixes will immediately apply
across our complete offering of color displays.</p> <div class=„row-fluid build-text“
readability=„34“> <p>The Adafruit_GFX library can be installed using the
Arduino Library Manager…this is the preferred and modern way. From the
Arduino “Sketch” menu, select “Include Library” then “Manage
Libraries…”</p> </div> <div class=„row-fluid build-image“><img class=„67406-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium260/graphic_lcds_manage-l
ibraries.png?1544574799 260w,
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium640/graphic_lcds_manage-libraries.
png?1544574799 640w,
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium800/graphic_lcds_manage-libraries.
png?1544574799 800w,
https://cdn-learn.adafruit.com/assets/assets/000/067/406/large1024/graphic_lcds_manage-libraries.pn
g?1544574799 1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium800/graphic_lcds_manage-libr
aries.png?1544574799“ alt=„graphic_lcds_manage-libraries.png“/></div> <div class=„row-fluid
build-text“ readability=„31“> <p>Type “gfx” in the search field to find it
quickly:</p> </div> <div class=„row-fluid build-image“><img class=„67407-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium260/graphic_lcds_adafruit-g
fx-library-manager.png?1544574825 260w,
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium640/graphic_lcds_adafruit-gfx-librar
y-manager.png?1544574825 640w,
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium800/graphic_lcds_adafruit-gfx-librar
y-manager.png?1544574825 800w,
https://cdn-learn.adafruit.com/assets/assets/000/067/407/large1024/graphic_lcds_adafruit-gfx-library-

https://learn.adafruit.com/adafruit-gfx-graphics-library?view=all
https://www.qgelm.de/wb2html/wb528.html
https://learn.adafruit.com/assets/1304
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium260/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium260/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium640/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium640/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium800/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium800/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/large1024/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/large1024/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium800/lcds___displays_ID797tri_LRG.jpg?1396770841
https://cdn-learn.adafruit.com/assets/assets/000/001/304/medium800/lcds___displays_ID797tri_LRG.jpg?1396770841
https://learn.adafruit.com/assets/67406
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium260/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium260/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium640/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium640/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium800/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium800/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/large1024/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/large1024/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium800/graphic_lcds_manage-libraries.png?1544574799
https://cdn-learn.adafruit.com/assets/assets/000/067/406/medium800/graphic_lcds_manage-libraries.png?1544574799
https://learn.adafruit.com/assets/67407
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium260/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium260/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium640/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium640/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium800/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium800/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/large1024/graphic_lcds_adafruit-gfx-library-manager.png?1544574825

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

manager.png?1544574825 1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw,
(max-width: 1365px) 47vw, 750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium800/graphic_lcds_adafruit-gfx-
library-manager.png?1544574825“ alt=„graphic_lcds_adafruit-gfx-library-
manager.png“/></div> <div class=„row-fluid build-text“ readability=„25“> <p>While
you’re there, also look for and install the Adafruit_ZeroDMA library.</p>
<p>The Adafruit_GFX library always works together with an additional library unique to
each specific display type — for example, the ST7735 1.8„ color LCD requires
installing Adafruit_GFX, Adafruit_ZeroDMA and the Adafruit_ST7735
library. The following libraries now operate in this manner:</p> <a title=„Link:
https://github.com/adafruit/RGB-matrix-Panel“ href=„https://github.com/adafruit/RGB-matrix-
Panel“>RGBmatrixPanel, for our 16×32
and 32×32 RGB LED matrix panels.
<a title=„Link: https://github.com/adafruit/TFTLCD-Library“
href=„https://github.com/adafruit/TFTLCD-Library“>Adafruit_TFTLCD, for our 2.8“ TFT LCD touchscreen breakout and TFT Touch Shield for Arduino. Adafruit_HX8340B, for our 2.2„ TFT Display with microSD. Adafruit_ST7735, for our 1.8“ TFT Display with microSD. <a
href=„https://github.com/adafruit/Adafruit-PCD8544-Nokia-5110-LCD-
library“>Adafruit_PCD8544, for the Nokia
5110/3310 monochrome LCD. Adafruit-Graphic-VFD-
Display-Library, for our 128×64 Graphic
VFD. Adafruit-
SSD1331-OLED-Driver-Library-for-Arduino for the 0.96„ 16-bit Color OLED w/microSD Holder.
Adafruit_SSD1306 for the
Monochrome 128×64 and 128×32 OLEDs. <p>The libraries are
written in C++ for Arduino but could easily be ported to any microcontroller by rewriting the low-level
pin access functions.</p> </div> <div class=„row-fluid build-text“ readability=„33“> <p>Older
versions of the Arduino IDE software require installing libraries manually; the Arduino Library Manager
did not yet exist. If using an early version of the Arduino software, this might be a good time to
upgrade. Otherwise, this tutorial
explains how to install and use Arduino libraries. Here are links to download the GFX and
ZeroDMA libraries directly (use the links above to get the corresponding display-specific
libraries):</p> </div> <p><a
href=„https://github.com/adafruit/Adafruit-GFX-Library/archive/master.zip“ class=„btn btn-large btn-
block btn-primary“ target=„_self“ data-zip-folder=“„ type=„button“>Download Adafruit_GFX
Library</p> <p><a href=„https://github.com/adafruit/Adafruit_ZeroDMA/archive/master.zip“
class=„btn btn-large btn-block btn-primary“ target=„_self“ data-zip-folder=“„
type=„button“>Download Adafruit_ZeroDMA Library</p> </div><div class=„page-content all-
page-view-content“ readability=„66“> <div class=„row-fluid build-text“ readability=„49“> <p>Pixels
— picture elements, the blocks comprising a digital image — are addressed by their

https://cdn-learn.adafruit.com/assets/assets/000/067/407/large1024/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium800/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://cdn-learn.adafruit.com/assets/assets/000/067/407/medium800/graphic_lcds_adafruit-gfx-library-manager.png?1544574825
https://github.com/adafruit/RGB-matrix-Panel
https://github.com/adafruit/RGB-matrix-Panel
https://github.com/adafruit/RGB-matrix-Panel
http://www.adafruit.com/products/420
http://www.adafruit.com/products/607
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/TFTLCD-Library
http://www.adafruit.com/products/335
http://www.adafruit.com/products/376
https://github.com/adafruit/Adafruit-HX8340B
http://www.adafruit.com/products/797
https://github.com/adafruit/Adafruit-ST7735-Library
http://www.adafruit.com/products/358
https://github.com/adafruit/Adafruit-PCD8544-Nokia-5110-LCD-library
https://github.com/adafruit/Adafruit-PCD8544-Nokia-5110-LCD-library
http://www.adafruit.com/products/338
https://github.com/adafruit/Adafruit-Graphic-VFD-Display-Library
https://www.adafruit.com/products/773
https://github.com/adafruit/Adafruit-SSD1331-OLED-Driver-Library-for-Arduino
http://www.adafruit.com/products/684
https://github.com/adafruit/Adafruit_SSD1306
https://www.adafruit.com/products/326
https://www.adafruit.com/products/661
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries
https://github.com/adafruit/Adafruit-GFX-Library/archive/master.zip
https://github.com/adafruit/Adafruit_ZeroDMA/archive/master.zip

2025/08/02 11:59 3/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

horizontal (X) and vertical (Y) coordinates. The coordinate system places the origin (0,0) at the top left
corner, with positive X increasing to the right and positive Y increasing downward. This is upside-down
relative to the standard Cartesian coordinate system of mathematics, but is established practice in
many computer graphics systems (a throwback to the days of raster-scan CRT graphics, which worked
top-to-bottom). To use a tall “portrait” layout rather than wide
“landscape” format, or if physical constraints dictate the orientation of a display in an
enclosure, one of four rotation settings can also be applied, indicating which corner of the display
represents the top left.</p> <p>Also unlike the mathematical Cartesian coordinate system, points
here have dimension — they are always one full integer pixel wide and tall.</p> </div> <div
class=„row-fluid build-image“><img class=„1264-
asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium260/lcds___displays_coords
ys.png?1396770439 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium640/lcds___displays_coordsys.png?1
396770439 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium800/lcds___displays_coordsys.png?1
396770439 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/264/large1024/lcds___displays_coordsys.png?13
96770439 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium800/lcds___displays_coordsys.
png?1396770439“ alt=„lcds_displays_coordsys.png“/></div> <div class=„row-fluid build-text“
readability=„53“> <p>Coordinates are always expressed in pixel units; there is no implicit scale to a
real-world measure like millimeters or inches, and the size of a displayed graphic will be a function of
that specific display’s dot pitch or pixel density. If you’re
aiming for a real-world dimension, you’ll need to scale your coordinates to suit. Dot pitch can
often be found in the device datasheet, or by measuring the screen width and dividing the number of
pixels across by this measurement.</p> <p>For color-capable displays, colors are represented as
unsigned 16-bit values. Some displays may physically be capable of more or fewer bits than this, but
the library operates with 16-bit values…these are easy for the Arduino to work with while also
providing a consistent data type across all the different displays. The primary color components
— red, green and blue — are all “packed” into a single 16-bit variable,
with the most significant 5 bits conveying red, middle 6 bits conveying green, and least significant 5
bits conveying blue. That extra bit is assigned to green because our eyes are most sensitive to green
light. Science!</p> </div> <div class=„row-fluid build-image“><img class=„1265-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium260/lcds___displays_colorp
ack.png?1396770449 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium640/lcds___displays_colorpack.png?
1396770449 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium800/lcds___displays_colorpack.png?
1396770449 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/265/large1024/lcds___displays_colorpack.png?13
96770449 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium800/lcds___displays_colorpack.
png?1396770449“ alt=„lcds_displays_colorpack.png“/></div> <div class=„row-fluid build-text“
readability=„39“> <p>For the most common primary and secondary colors, we have this handy
cheat-sheet that you can include in your own code. Of course, you can pick any of 65,536 different
colors, but this basic list may be easiest when starting out:</p> </div> <div class=„build-code code-
element“ readability=„9“> <pre class=„code-text-only c4“> Color definitions #define BLACK 0x0000

https://learn.adafruit.com/assets/1264
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium260/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium260/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium640/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium640/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium800/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium800/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/large1024/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/large1024/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium800/lcds___displays_coordsys.png?1396770439
https://cdn-learn.adafruit.com/assets/assets/000/001/264/medium800/lcds___displays_coordsys.png?1396770439
https://learn.adafruit.com/assets/1265
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium260/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium260/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium640/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium640/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium800/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium800/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/large1024/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/large1024/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium800/lcds___displays_colorpack.png?1396770449
https://cdn-learn.adafruit.com/assets/assets/000/001/265/medium800/lcds___displays_colorpack.png?1396770449

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

#define BLUE 0x001F #define RED 0xF800 #define GREEN 0x07E0 #define CYAN 0x07FF #define
MAGENTA 0xF81F #define YELLOW 0xFFE0 #define WHITE 0xFFFF</pre> <pre class=„prettyprint
linenums“> Color definitions #define BLACK 0x0000 #define BLUE 0x001F #define RED 0xF800
#define GREEN 0x07E0 #define CYAN 0x07FF #define MAGENTA 0xF81F #define YELLOW 0xFFE0
#define WHITE 0xFFFF</pre></div> <div class=„row-fluid build-text“ readability=„43“> <p>For
monochrome (single-color) displays, colors are always specified as simply 1 (set)
or 0 (clear). The semantics of set/clear are specific to the type of display: with
something like a luminous OLED display, a “set” pixel is lighted, whereas with a
reflective LCD display, a “set” pixel is typically dark. There may be exceptions, but
generally you can count on 0 (clear) representing the default background state for a
freshly-initialized display, whatever that works out to be.</p> </div> </div><div class=„page-
content all-page-view-content“ readability=„178“> <div class=„row-fluid build-text“
readability=„50“>Each device-specific display library will have its own constructors and initialization
functions. These are documented in the individual tutorials for each display type, or oftentimes are
evident in the specific library header file. The remainder of this tutorial covers the common graphics
functions that work the same regardless of the display type. <p>The function descriptions below are
merely prototypes — there’s an assumption that a display
object is declared and initialized as needed by the device-specific library. Look at the example code
with each library to see it in actual use. For example, where we show print(1234.56), your
actual code would place the object name before this, e.g. it might
read screen.print(1234.56) (if you have declared your display object with the
name screen).</p> First up is the most basic pixel pusher. You can call this with X, Y
coordinates and a color and it will make a single dot:</div> <div class=„build-code code-element“
readability=„11“> <pre class=„code-text-only c4“>void drawPixel(uint16_t x, uint16_t y, uint16_t
color);</pre> <pre class=„prettyprint linenums“>void drawPixel(uint16_t x, uint16_t y, uint16_t
color);</pre></div> <div class=„row-fluid build-image“><img class=„1267-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium260/lcds___displays_st7735
pixel.jpg?1396770465 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium640/lcds___displays_st7735pixel.jpg
?1396770465 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium800/lcds___displays_st7735pixel.jpg
?1396770465 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/267/large1024/lcds___displays_st7735pixel.jpg?1
396770465 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium800/lcds___displays_st7735pix
el.jpg?1396770465“ alt=„lcds_displays_st7735pixel.jpg“/></div> <div class=„row-fluid build-
text“ readability=„27“> <p>You can also draw lines, with a starting and end point and color:</p>
</div> <div class=„build-code code-element“ readability=„15“> <pre class=„code-text-only
c4“>void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t color);</pre> <pre
class=„prettyprint linenums“>void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1,
uint16_t color);</pre></div> <div class=„row-fluid build-image“><img class=„1268-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium260/lcds___displays_line.pn
g?1396770476 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium640/lcds___displays_line.png?13967
70476 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium800/lcds___displays_line.png?13967

https://learn.adafruit.com/assets/1267
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium260/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium260/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium640/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium640/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium800/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium800/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/large1024/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/large1024/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium800/lcds___displays_st7735pixel.jpg?1396770465
https://cdn-learn.adafruit.com/assets/assets/000/001/267/medium800/lcds___displays_st7735pixel.jpg?1396770465
https://learn.adafruit.com/assets/1268
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium260/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium260/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium640/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium640/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium800/lcds___displays_line.png?1396770476

2025/08/02 11:59 5/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

70476 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/268/large1024/lcds___displays_line.png?139677
0476 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium800/lcds___displays_line.png?
1396770476“ alt=„lcds_displays_line.png“/></div> <div class=„row-fluid build-image“><img class=„1269-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium260/lcds___displays_st7735
lines.jpg?1396770485 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium640/lcds___displays_st7735lines.jpg
?1396770485 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium800/lcds___displays_st7735lines.jpg
?1396770485 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/269/large1024/lcds___displays_st7735lines.jpg?1
396770485 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium800/lcds___displays_st7735lin
es.jpg?1396770485“ alt=„lcds_displays_st7735lines.jpg“/></div> <div class=„row-fluid build-
text“ readability=„33“> <p>For horizontal or vertical lines, there are optimized line-drawing
functions that avoid the angular calculations:</p> </div> <div class=„build-code code-element“
readability=„21“> <pre class=„code-text-only c4“>void drawFastVLine(uint16_t x0, uint16_t y0,
uint16_t length, uint16_t color); void drawFastHLine(uint8_t x0, uint8_t y0, uint8_t length, uint16_t
color);</pre> <pre class=„prettyprint linenums“>void drawFastVLine(uint16_t x0, uint16_t y0,
uint16_t length, uint16_t color); void drawFastHLine(uint8_t x0, uint8_t y0, uint8_t length, uint16_t
color);</pre></div> <div class=„row-fluid build-text“ readability=„39“> <p>Next up, rectangles and
squares can be drawn and filled using the following procedures. Each accepts an X, Y pair for the top-
left corner of the rectangle, a width and height (in pixels), and a
color. drawRect() renders just the frame (outline) of the rectangle — the interior
is unaffected — while fillRect() fills the entire area with a given color:</p>
</div> <div class=„build-code code-element“ readability=„27“> <pre class=„code-text-only
c4“>void drawRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t color); void
fillRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t color);</pre> <pre
class=„prettyprint linenums“>void drawRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t
color); void fillRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t color);</pre></div> <div
class=„row-fluid build-image“><img class=„1270-
asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium260/lcds___displays_rect.pn
g?1396770497 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium640/lcds___displays_rect.png?13967
70497 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium800/lcds___displays_rect.png?13967
70497 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/270/large1024/lcds___displays_rect.png?139677
0497 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium800/lcds___displays_rect.png?
1396770497“ alt=„lcds_displays_rect.png“/></div> <div class=„row-fluid build-image“><img class=„1271-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium260/lcds___displays_st7735
squares.jpg?1396770504 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium640/lcds___displays_st7735squares.j

https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium800/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/large1024/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/large1024/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium800/lcds___displays_line.png?1396770476
https://cdn-learn.adafruit.com/assets/assets/000/001/268/medium800/lcds___displays_line.png?1396770476
https://learn.adafruit.com/assets/1269
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium260/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium260/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium640/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium640/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium800/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium800/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/large1024/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/large1024/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium800/lcds___displays_st7735lines.jpg?1396770485
https://cdn-learn.adafruit.com/assets/assets/000/001/269/medium800/lcds___displays_st7735lines.jpg?1396770485
https://learn.adafruit.com/assets/1270
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium260/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium260/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium640/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium640/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium800/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium800/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/large1024/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/large1024/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium800/lcds___displays_rect.png?1396770497
https://cdn-learn.adafruit.com/assets/assets/000/001/270/medium800/lcds___displays_rect.png?1396770497
https://learn.adafruit.com/assets/1271
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium260/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium260/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium640/lcds___displays_st7735squares.jpg?1396770504

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

pg?1396770504 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium800/lcds___displays_st7735squares.j
pg?1396770504 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/271/large1024/lcds___displays_st7735squares.jp
g?1396770504 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium800/lcds___displays_st7735sq
uares.jpg?1396770504“ alt=„lcds_displays_st7735squares.jpg“/></div> <div class=„row-fluid
build-text“ readability=„41“> <p>To create a solid rectangle with a contrasting outline, use fillRect()
first, then drawRect() over it.</p> <p>Likewise, for circles, you can draw and fill. Each function
accepts an X, Y pair for the center point, a radius in pixels, and a color:</p> </div> <div
class=„build-code code-element“ readability=„21“> <pre class=„code-text-only c4“>void
drawCircle(uint16_t x0, uint16_t y0, uint16_t r, uint16_t color); void fillCircle(uint16_t x0, uint16_t y0,
uint16_t r, uint16_t color);</pre> <pre class=„prettyprint linenums“>void drawCircle(uint16_t x0,
uint16_t y0, uint16_t r, uint16_t color); void fillCircle(uint16_t x0, uint16_t y0, uint16_t r, uint16_t
color);</pre></div> <div class=„row-fluid build-image“><img class=„1272-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium260/lcds___displays_circle.p
ng?1396770516 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium640/lcds___displays_circle.png?1396
770516 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium800/lcds___displays_circle.png?1396
770516 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/272/large1024/lcds___displays_circle.png?13967
70516 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium800/lcds___displays_circle.png
?1396770516“ alt=„lcds_displays_circle.png“/></div> <div class=„row-fluid build-image“><img class=„1273-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium260/lcds___displays_st7735
circles.jpg?1396770524 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium640/lcds___displays_st7735circles.jp
g?1396770524 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium800/lcds___displays_st7735circles.jp
g?1396770524 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/273/large1024/lcds___displays_st7735circles.jpg
?1396770524 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium800/lcds___displays_st7735cir
cles.jpg?1396770524“ alt=„lcds_displays_st7735circles.jpg“/></div> <div class=„row-fluid
build-text“ readability=„35“> <p>For rectangles with rounded corners, both draw and fill functions
are again available. Each begins with an X, Y, width and height (just like normal rectangles), then
there’s a corner radius (in pixels) and finally the color value:</p> </div> <div class=„build-
code code-element“ readability=„33“> <pre class=„code-text-only c4“>void
drawRoundRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t radius, uint16_t color); void
fillRoundRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t radius, uint16_t color);</pre>
<pre class=„prettyprint linenums“>void drawRoundRect(uint16_t x0, uint16_t y0, uint16_t w,
uint16_t h, uint16_t radius, uint16_t color); void fillRoundRect(uint16_t x0, uint16_t y0, uint16_t w,
uint16_t h, uint16_t radius, uint16_t color);</pre></div> <div class=„row-fluid build-image“><a

https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium640/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium800/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium800/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/large1024/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/large1024/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium800/lcds___displays_st7735squares.jpg?1396770504
https://cdn-learn.adafruit.com/assets/assets/000/001/271/medium800/lcds___displays_st7735squares.jpg?1396770504
https://learn.adafruit.com/assets/1272
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium260/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium260/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium640/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium640/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium800/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium800/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/large1024/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/large1024/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium800/lcds___displays_circle.png?1396770516
https://cdn-learn.adafruit.com/assets/assets/000/001/272/medium800/lcds___displays_circle.png?1396770516
https://learn.adafruit.com/assets/1273
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium260/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium260/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium640/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium640/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium800/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium800/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/large1024/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/large1024/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium800/lcds___displays_st7735circles.jpg?1396770524
https://cdn-learn.adafruit.com/assets/assets/000/001/273/medium800/lcds___displays_st7735circles.jpg?1396770524

2025/08/02 11:59 7/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

href=„https://learn.adafruit.com/assets/1274“><img class=„1274-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium260/lcds___displays_roundr
ect.png?1396770535 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium640/lcds___displays_roundrect.png?
1396770535 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium800/lcds___displays_roundrect.png?
1396770535 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/274/large1024/lcds___displays_roundrect.png?13
96770535 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium800/lcds___displays_roundrect
.png?1396770535“ alt=„lcds_displays_roundrect.png“/></div> <div class=„row-fluid build-text“
readability=„45“> <p>Here’s an added bonus trick: because the circle functions are always
drawn relative to a center pixel, the resulting circle diameter will always be an odd number of pixels.
If an even-sized circle is required (which would place the center
point between pixels), this can be achieved using one of the rounded
rectangle functions: pass an identical width and height that are even values, and a corner radius
that’s exactly half this value.</p> <p>With triangles, once again there are the draw and fill
functions. Each requires a full seven parameters: the X, Y coordinates for three corner points defining
the triangle, followed by a color:</p> </div> <div class=„build-code code-element“
readability=„37“> <pre class=„code-text-only c4“>void drawTriangle(uint16_t x0, uint16_t y0,
uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2, uint16_t color); void fillTriangle(uint16_t x0, uint16_t
y0, uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2, uint16_t color);</pre> <pre class=„prettyprint
linenums“>void drawTriangle(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t x2, uint16_t
y2, uint16_t color); void fillTriangle(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t x2,
uint16_t y2, uint16_t color);</pre></div> <div class=„row-fluid build-image“><img class=„1275-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium260/lcds___displays_triangl
e.png?1396770547 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium640/lcds___displays_triangle.png?13
96770547 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium800/lcds___displays_triangle.png?13
96770547 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/275/large1024/lcds___displays_triangle.png?139
6770547 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium800/lcds___displays_triangle.p
ng?1396770547“ alt=„lcds_displays_triangle.png“/></div> <div class=„row-fluid build-text“
readability=„37“> <p>There are two basic string drawing procedures for adding text. The first is just
for a single character. You can place this character at any location and with any color. There’s
only one font (to save on space) and it’s meant to be 5×8 pixels, but an optional size
parameter can be passed which scales the font by this factor (e.g. size=2 will render the text at
10×16 pixels per character). It’s a little blocky but having just a single font helps keep the
program size down.</p> </div> <div class=„build-code code-element“ readability=„17“> <pre
class=„code-text-only c4“>void drawChar(uint16_t x, uint16_t y, char c, uint16_t color, uint16_t bg,
uint8_t size);</pre> <pre class=„prettyprint linenums“>void drawChar(uint16_t x, uint16_t y, char c,
uint16_t color, uint16_t bg, uint8_t size);</pre></div> <div class=„row-fluid build-image“><img class=„1276-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium260/lcds___displays_char.p
ng?1396770557 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium640/lcds___displays_char.png?1396

https://learn.adafruit.com/assets/1274
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium260/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium260/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium640/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium640/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium800/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium800/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/large1024/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/large1024/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium800/lcds___displays_roundrect.png?1396770535
https://cdn-learn.adafruit.com/assets/assets/000/001/274/medium800/lcds___displays_roundrect.png?1396770535
https://learn.adafruit.com/assets/1275
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium260/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium260/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium640/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium640/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium800/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium800/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/large1024/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/large1024/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium800/lcds___displays_triangle.png?1396770547
https://cdn-learn.adafruit.com/assets/assets/000/001/275/medium800/lcds___displays_triangle.png?1396770547
https://learn.adafruit.com/assets/1276
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium260/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium260/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium640/lcds___displays_char.png?1396770557

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

770557 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium800/lcds___displays_char.png?1396
770557 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/276/large1024/lcds___displays_char.png?139677
0557 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium800/lcds___displays_char.png?
1396770557“ alt=„lcds_displays_char.png“/></div> <div class=„row-fluid build-text“
readability=„38“> <p>Text is very flexible but operates a bit differently. Instead of one procedure,
the text size, color and position are set up in separate functions and then the print() function is used
— this makes it easy and provides all of the same string and number formatting capabilities of
the familiar Serial.print() function!</p> </div> <div class=„build-code code-element“
readability=„13“> <pre class=„code-text-only c4“>void setCursor(uint16_t x0, uint16_t y0); void
setTextColor(uint16_t color); void setTextColor(uint16_t color, uint16_t backgroundcolor); void
setTextSize(uint8_t size); void setTextWrap(boolean w);</pre> <pre class=„prettyprint
linenums“>void setCursor(uint16_t x0, uint16_t y0); void setTextColor(uint16_t color); void
setTextColor(uint16_t color, uint16_t backgroundcolor); void setTextSize(uint8_t size); void
setTextWrap(boolean w);</pre></div> <div class=„row-fluid build-text“ readability=„45“>
<p>Begin with setCursor(x, y), which will place the top left corner of the text wherever you
please. Initially this is set to (0,0) (the top-left corner of the screen). Then set the text color
with setTextColor(color) — by default this is white. Text is normally drawn
“clear” — the open parts of each character show the original background
contents, but if you want the text to block out what’s underneath, a background color can be
specified as an optional second parameter tosetTextColor().
Finally, setTextSize(size) will multiply the scale of the text by a given integer factor.
Below you can see scales of 1 (the default), 2 and 3. It appears blocky at larger sizes because we only
ship the library with a single simple font, to save space.</p> </div> <p>Note that the text
background color is not supported for custom fonts. For these, you will need to determine the text
extents and explicitly draw a filled rectangle before drawing the text.</p> <div class=„row-fluid
build-image“><img class=„1277-asset img-
responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium260/lcds___displays_text.jp
g?1396770564 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium640/lcds___displays_text.jpg?13967
70564 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium800/lcds___displays_text.jpg?13967
70564 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/277/large1024/lcds___displays_text.jpg?1396770
564 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium800/lcds___displays_text.jpg?1
396770564“ alt=„lcds_displays_text.jpg“/></div> <div class=„row-fluid build-text“
readability=„50“> <p>After setting everything up, you can
use print() or println() — just like you do with Serial
printing! For example, to print a string, use print(„Hello world“) -
that’s the first line of the image above. You can also use print() for numbers
and variables — the second line above is the output ofprint(1234.56) and the third line
is print(0xDEADBEEF, HEX).</p> <p>By default, long lines of text are set to automatically
“wrap” back to the leftmost column. To override this behavior (so text will run off the

https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium640/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium800/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium800/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/large1024/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/large1024/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium800/lcds___displays_char.png?1396770557
https://cdn-learn.adafruit.com/assets/assets/000/001/276/medium800/lcds___displays_char.png?1396770557
https://learn.adafruit.com/assets/1277
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium260/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium260/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium640/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium640/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium800/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium800/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/large1024/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/large1024/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium800/lcds___displays_text.jpg?1396770564
https://cdn-learn.adafruit.com/assets/assets/000/001/277/medium800/lcds___displays_text.jpg?1396770564

2025/08/02 11:59 9/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

right side of the display — useful for scrolling marquee effects), use setTextWrap(false). The
normal wrapping behavior is restored with setTextWrap(true).</p> <p>See the “Using Fonts”
page for additional text features in the latest GFX library.</p> <p>You can draw small monochrome
(single color) bitmaps, good for sprites and other mini-animations or icons:</p> </div> <div
class=„build-code code-element“ readability=„17“> <pre class=„code-text-only c4“>void
drawBitmap(int16_t x, int16_t y, uint8_t *bitmap, int16_t w, int16_t h, uint16_t color);</pre> <pre
class=„prettyprint linenums“>void drawBitmap(int16_t x, int16_t y, uint8_t *bitmap, int16_t w, int16_t
h, uint16_t color);</pre></div> <div class=„row-fluid build-text“ readability=„42“> <p>This issues
a contiguous block of bits to the display, where each '1' bit sets the corresponding pixel to 'color,'
while each '0' bit is skipped. x, y is the top-left corner where the bitmap is drawn, w, h are the width
and height in pixels.</p> <p>The bitmap data must be located in program memory
using the PROGMEM directive. This is a somewhat advanced function and beginners are best advised
to come back to this later. For an introduction, see the Arduino tutorial on PROGMEM usage.</p>
<p>Here's a handy webtool for generating bitmap ->
memorymaps</p> <p>The fillScreen() function will set the entire display to a given color,
erasing any existing content:</p> </div> <div class=„build-code code-element“ readability=„7“>
<pre class=„code-text-only c4“>void fillScreen(uint16_t color);</pre> <pre class=„prettyprint
linenums“>void fillScreen(uint16_t color);</pre></div> </div><div class=„page-content all-page-
view-content“ readability=„58“> <div class=„row-fluid build-text“ readability=„44“> <p>You can
also rotate your drawing. Note that this will not rotate what you already drew, but it will
change the coordinate system for any new drawing. This can be really handy if you had to turn your
board or display sideways or upside down to fit in a particular enclosure. In most cases this only
needs to be done once, inside setup().</p> We can only rotate 0, 90, 180 or 270 degrees - anything
else is not possible in hardware and is too taxing for an Arduino to calculate in software
</div>
<div class=„row-fluid build-image“><img
class=„1266-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium260/lcds___displays_rotate
d.jpg?1396770456 260w,
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium640/lcds___displays_rotated.jpg?139
6770456 640w,
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium800/lcds___displays_rotated.jpg?139
6770456 800w,
https://cdn-learn.adafruit.com/assets/assets/000/001/266/large1024/lcds___displays_rotated.jpg?1396
770456 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium800/lcds___displays_rotated.jp
g?1396770456“ alt=„lcds_displays_rotated.jpg“/></div> <div class=„build-code code-element“
readability=„7“> <pre class=„code-text-only c4“>void setRotation(uint8_t rotation);</pre> <pre
class=„prettyprint linenums“>void setRotation(uint8_t rotation);</pre></div> <div class=„row-fluid
build-text“ readability=„60“> <p>The rotation parameter can be 0, 1, 2 or 3. For displays that are
part of an Arduino shield, rotation value 0 sets the display to a portrait (tall) mode, with
the USB jack at the top right. Rotation value 2 is also a portrait mode, with the USB jack at the bottom
left. Rotation 1 is landscape (wide) mode, with the USB jack at the bottom right, while
rotation 3 is also landscape, but with the USB jack at the top left.</p> <p>For other displays, please
try all 4 rotations to figure out how they end up rotating as the alignment will vary depending on each
display, in general the rotations move counter-clockwise
</p> <p>When rotating, the origin
point (0,0) changes — the idea is that it should be arranged at the top-left of the display for the
other graphics functions to make consistent sense (and match all the function descriptions
above).</p> <p>If you need to reference the size of the screen (which will change between portrait

https://learn.adafruit.com/adafruit-gfx-graphics-library/using-fonts
http://arduino.cc/en/Reference/PROGMEM
http://javl.github.io/image2cpp/
https://learn.adafruit.com/assets/1266
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium260/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium260/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium640/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium640/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium800/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium800/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/large1024/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/large1024/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium800/lcds___displays_rotated.jpg?1396770456
https://cdn-learn.adafruit.com/assets/assets/000/001/266/medium800/lcds___displays_rotated.jpg?1396770456

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

and landscape modes), use width() and height().</p> </div> <div class=„build-code code-element“
readability=„7“> <pre class=„code-text-only c4“>uint16_t width(); uint16_t height();</pre> <pre
class=„prettyprint linenums“>uint16_t width(); uint16_t height();</pre></div> <div class=„row-fluid
build-text“ readability=„33“> <p>Each returns the dimension (in pixels) of the corresponding axis,
adjusted for the display’s current rotation setting.</p> </div> </div><div class=„page-
content all-page-view-content“ readability=„118“> <div class=„row-fluid build-text“
readability=„35“> <p>More recent versions of the Adafruit GFX library offer the ability to use
alternate fonts besides the one standard fixed-size and -spaced face that’s built in.
Several alternate fonts are included, plus there’s the ability to add new ones.</p>
</div> <table class=„build-table“ readability=„5“><tr class=„build-row“ readability=„12“><td
class=„side-images“> <li class=„medium-side“><a class=„large-side-image-link“
href=„https://learn.adafruit.com/assets/29279“><img class=„29279-asset medium-side-image img-
responsive“
src=„https://cdn-learn.adafruit.com/assets/assets/000/029/279/medium640/lcds___displays_specimen
s.png?1450832251“ alt=„lcds_displays_specimens.png“/> </td> <td class=„side-
text“ readability=„32“> <div class=„text“ readability=„41“> <p>The included fonts are derived
from the GNU FreeFont project. There
are three faces: “Serif” (reminiscent of Times New Roman), “Sans”
(reminiscent of Helvetica or Arial) and “Mono” (reminiscent of Courier). Each is
available in a few styles (bold, italic, etc.) and sizes. The included fonts are in a bitmap format, not
scalable vectors, as it needs to work within the limitations of a small microcontroller.</p> </div>
</td> </tr></table><div class=„row-fluid build-text“ readability=„32“> <p>Located inside the
“Fonts” folder inside Adafruit_GFX, the included files (as of this writing) are:</p>
</div> <div class=„build-code code-element“ readability=„15“> <pre class=„code-text-only
c4“>FreeMono12pt7b.h FreeSansBoldOblique12pt7b.h FreeMono18pt7b.h
FreeSansBoldOblique18pt7b.h FreeMono24pt7b.h FreeSansBoldOblique24pt7b.h FreeMono9pt7b.h
FreeSansBoldOblique9pt7b.h FreeMonoBold12pt7b.h FreeSansOblique12pt7b.h
FreeMonoBold18pt7b.h FreeSansOblique18pt7b.h FreeMonoBold24pt7b.h FreeSansOblique24pt7b.h
FreeMonoBold9pt7b.h FreeSansOblique9pt7b.h FreeMonoBoldOblique12pt7b.h FreeSerif12pt7b.h
FreeMonoBoldOblique18pt7b.h FreeSerif18pt7b.h FreeMonoBoldOblique24pt7b.h FreeSerif24pt7b.h
FreeMonoBoldOblique9pt7b.h FreeSerif9pt7b.h FreeMonoOblique12pt7b.h FreeSerifBold12pt7b.h
FreeMonoOblique18pt7b.h FreeSerifBold18pt7b.h FreeMonoOblique24pt7b.h FreeSerifBold24pt7b.h
FreeMonoOblique9pt7b.h FreeSerifBold9pt7b.h FreeSans12pt7b.h FreeSerifBoldItalic12pt7b.h
FreeSans18pt7b.h FreeSerifBoldItalic18pt7b.h FreeSans24pt7b.h FreeSerifBoldItalic24pt7b.h
FreeSans9pt7b.h FreeSerifBoldItalic9pt7b.h FreeSansBold12pt7b.h FreeSerifItalic12pt7b.h
FreeSansBold18pt7b.h FreeSerifItalic18pt7b.h FreeSansBold24pt7b.h FreeSerifItalic24pt7b.h
FreeSansBold9pt7b.h FreeSerifItalic9pt7b.h</pre> <pre class=„prettyprint
linenums“>FreeMono12pt7b.h FreeSansBoldOblique12pt7b.h FreeMono18pt7b.h
FreeSansBoldOblique18pt7b.h FreeMono24pt7b.h FreeSansBoldOblique24pt7b.h FreeMono9pt7b.h
FreeSansBoldOblique9pt7b.h FreeMonoBold12pt7b.h FreeSansOblique12pt7b.h
FreeMonoBold18pt7b.h FreeSansOblique18pt7b.h FreeMonoBold24pt7b.h FreeSansOblique24pt7b.h
FreeMonoBold9pt7b.h FreeSansOblique9pt7b.h FreeMonoBoldOblique12pt7b.h FreeSerif12pt7b.h
FreeMonoBoldOblique18pt7b.h FreeSerif18pt7b.h FreeMonoBoldOblique24pt7b.h FreeSerif24pt7b.h
FreeMonoBoldOblique9pt7b.h FreeSerif9pt7b.h FreeMonoOblique12pt7b.h FreeSerifBold12pt7b.h
FreeMonoOblique18pt7b.h FreeSerifBold18pt7b.h FreeMonoOblique24pt7b.h FreeSerifBold24pt7b.h
FreeMonoOblique9pt7b.h FreeSerifBold9pt7b.h FreeSans12pt7b.h FreeSerifBoldItalic12pt7b.h
FreeSans18pt7b.h FreeSerifBoldItalic18pt7b.h FreeSans24pt7b.h FreeSerifBoldItalic24pt7b.h
FreeSans9pt7b.h FreeSerifBoldItalic9pt7b.h FreeSansBold12pt7b.h FreeSerifItalic12pt7b.h
FreeSansBold18pt7b.h FreeSerifItalic18pt7b.h FreeSansBold24pt7b.h FreeSerifItalic24pt7b.h

https://learn.adafruit.com/assets/29279
https://cdn-learn.adafruit.com/assets/assets/000/029/279/medium640/lcds___displays_specimens.png?1450832251
https://cdn-learn.adafruit.com/assets/assets/000/029/279/medium640/lcds___displays_specimens.png?1450832251
https://www.gnu.org/software/freefont/

2025/08/02 11:59 11/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

FreeSansBold9pt7b.h FreeSerifItalic9pt7b.h</pre></div> <div class=„row-fluid build-text“
readability=„45“> <p>Each filename starts with the face name (“FreeMono”,
“FreeSerif”, etc.) followed by the style (“Bold”,
“Oblique”, none, etc.), font size in points (currently 9, 12, 18 and 24 point sizes are
provided) and “7b” to indicate that these contain 7-bit characters (ASCII codes
“ ” through “~”); 8-bit fonts (supporting symbols and/or
international characters) are not yet provided but may come later.</p> </div> <div
class=„row-fluid build-text“ readability=„33“> <p>After #including the Adafruit_GFX and display-
specific libraries, include the font file(s) you plan to use in your sketch. For example:</p> </div>
<div class=„build-code code-element“ readability=„9“> <pre class=„code-text-only c4“>#include
<Adafruit_GFX.h> Core graphics library #include <Adafruit_TFTLCD.h> Hardware-specific
library #include <Fonts/FreeMonoBoldOblique12pt7b.h> #include
<Fonts/FreeSerif9pt7b.h></pre> <pre class=„prettyprint linenums“>#include
<Adafruit_GFX.h> Core graphics library #include <Adafruit_TFTLCD.h> Hardware-specific
library #include <Fonts/FreeMonoBoldOblique12pt7b.h> #include
<Fonts/FreeSerif9pt7b.h></pre></div> <div class=„row-fluid build-text“ readability=„41“>
<p>Each font takes up a bit of program space; larger fonts typically require
more room. This is a finite resource (about 32K max on an Arduino Uno for font data and all of
your sketch code), so choose carefully. Too big and the code will refuse to compile (or in some
edge cases, may compile but then won’t upload to the board). If this happens, use fewer or
smaller fonts, or use the standard built-in font.</p> </div> <div class=„row-fluid build-text“
readability=„39“> <p>Inside these .h files are several data structures, including one main font
structure which will usually have the same name as the font file (minus the .h). To select a font for
subsequent graphics operations, use the setFont() function, passing the address
of this structure, such as:</p> </div> <div class=„build-code code-element“
readability=„7“> <pre class=„code-text-only
c4“>tft.setFont(&FreeMonoBoldOblique12pt7b);</pre> <pre class=„prettyprint
linenums“>tft.setFont(&FreeMonoBoldOblique12pt7b);</pre></div> <div class=„row-fluid
build-text“ readability=„38“> <p>Subsequent calls to tft.print() will now use this font. Most
other attributes that previously worked with the built-in font (color, size, etc.) work similarly
here.</p> <p>To return to the standard fixed-size font, call setFont(), passing either NULL or no
arguments:</p> </div> <div class=„build-code code-element“> <pre class=„code-text-only
c4“>tft.setFont();</pre> <pre class=„prettyprint linenums“>tft.setFont();</pre></div> <div
class=„row-fluid build-text“ readability=„50“> <p>Some text attributes behave a little differently
with these new fonts. Not wanting to break compatibility with existing code, the
“classic” font continues to behave as before.</p> <p>For example, whereas the
cursor position when printing with the classic font identified the top-left corner of the
character cell, with new fonts the cursor position indicates the baseline — the
bottom-most row — of subsequent text. Characters may vary in size and width, and
don’t necessarily begin at the exact cursor column (as in below, this character starts one
pixel left of the cursor, but others may be on or to the right of it).</p> <p>When
switching between built-in and custom fonts, the library will automatically shift the cursor position up
or down 6 pixels as needed to continue along the same baseline.</p> </div> <div class=„row-fluid
build-image“><img class=„29277-asset img-
responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium260/lcds___displays_NewCh
ar.png?1450831047 260w,
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium640/lcds___displays_NewChar.png?1
450831047 640w,
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium800/lcds___displays_NewChar.png?1
450831047 800w,

https://learn.adafruit.com/assets/29277
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium260/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium260/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium640/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium640/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium800/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium800/lcds___displays_NewChar.png?1450831047

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

https://cdn-learn.adafruit.com/assets/assets/000/029/277/large1024/lcds___displays_NewChar.png?14
50831047 1024w“ sizes=“(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px„
src=„https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium800/lcds___displays_NewChar.
png?1450831047“ alt=„lcds___displays_NewChar.png“/></div> <div class=„row-fluid build-
text“ readability=„46“> <p>One “gotcha” to be aware of with new fonts: there is no
“background” color option…you can set this value but it will be ignored. This is
on purpose and by design.</p> <p>The background color feature has typically been used with the
“classic” font to overwrite old screen contents with new data. This only works because
those characters are a uniform size; it’s not a sensible thing to do with proportionally-spaced
fonts with characters of varying sizes (and which may overlap).</p> <p>To replace previously-drawn
test when using a custom font, use the getTextBounds() function to determine the smallest rectangle
encompassing a string, erase the area using fillRect(), then draw new text.</p> </div> <div
class=„build-code code-element“ readability=„23“> <pre class=„code-text-only c4“>int16_t x1, y1;
uint16_t w, h; tft.getTextBounds(string, x, y, &x1, &y1, &w, &h);</pre> <pre
class=„prettyprint linenums“>int16_t x1, y1; uint16_t w, h; tft.getTextBounds(string, x, y, &x1,
&y1, &w, &h);</pre></div> <div class=„row-fluid build-text“ readability=„42“>
<p>getTextBounds expects a string, a starting cursor X&Y position (the current cursor position
will not be altered), and addresses of two signed and two unsigned 16-bit integers. These last four
values will then contain the upper-left corner and the width & height of the area covered by this
text — these can then be passed directly as arguments to fillRect().</p> <p>This will
unfortunately “blink” the text when erasing and redrawing, but is unavoidable. The
old scheme of drawing background pixels in the same pass only creates a new set of problems.</p>
</div> <div class=„row-fluid build-text“ readability=„43“> <p>If you want to create new font sizes
not included with the library, or adapt entirely new fonts, we have a command-line tool (in the
“fontconvert” folder) for this. It should work on many Linux- or UNIX-like systems
(Raspberry Pi, Mac OS X, maybe Cygwin for Windows, among others).</p> <p>Building this tool
requires the gcc compiler and FreeType library. Most
Linux distributions include both by default. For others, you may need to install developer tools and
download and build FreeType from
the source. Then edit the Makefile to match your setup before invoking
“make”.</p> </div> <div class=„row-fluid build-text“ readability=„38“>
<p>fontconvert expects at least two arguments: a font filename (such as a scalable
TrueType vector font) and a size, in points (72 points = 1 inch; the code presumes a screen resolution
similar to the Adafruit 2.8“ TFT displays). The output should be redirected to a .h file…you can
call this whatever you like but I try to be somewhat descriptive:</p> </div> <div class=„build-code
code-element“ readability=„7“> <pre class=„code-text-only c4“>./fontconvert myfont.ttf 12 >
myfont12pt7b.h</pre> <pre class=„prettyprint linenums“>./fontconvert myfont.ttf 12 >
myfont12pt7b.h</pre></div> <div class=„row-fluid build-text“ readability=„45“> <p>The GNU
FreeFont files are not included in the library repository but are easily downloaded. Or you can
convert most any font you like.</p> <p>The name assigned to the font structure
within this file is based on the input filename and font size, not the
output. This is why I recommend using descriptive filenames incorporating the font base
name, size, and „7p“. Then the .h filename and font structure name can match.</p> <p>The
resulting .h file can be copied to the Adafruit_GFX/Fonts folder, or you can import the file as a new tab
in your Arduino sketch using the Sketch→Add File… command.</p> <p>If in the Fonts
folder, use this syntax when #including the file:</p> </div> <div class=„build-code code-element“
readability=„7“> <pre class=„code-text-only c4“>#include <Fonts/myfont12pt7b.h></pre>

https://cdn-learn.adafruit.com/assets/assets/000/029/277/large1024/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/large1024/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium800/lcds___displays_NewChar.png?1450831047
https://cdn-learn.adafruit.com/assets/assets/000/029/277/medium800/lcds___displays_NewChar.png?1450831047
http://www.freetype.org
http://download.savannah.gnu.org/releases/freetype/
http://savannah.gnu.org/projects/freefont/

2025/08/02 11:59 13/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

<pre class=„prettyprint linenums“>#include <Fonts/myfont12pt7b.h></pre></div> <div
class=„row-fluid build-text“ readability=„32“> <p>If a tab within your sketch, use this syntax:</p>
</div> <div class=„build-code code-element“ readability=„7“> <pre class=„code-text-only
c4“>#include „myfont12pt7b.h“</pre> <pre class=„prettyprint linenums“>#include
„myfont12pt7b.h“</pre></div> </div><div class=„page-content all-page-view-content“
readability=„103“> <div class=„row-fluid build-image“><img class=„67997-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium260/graphic_lcds_loaded-b
mp.jpg?1545441110 260w,
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium640/graphic_lcds_loaded-bmp.jpg?1
545441110 640w,
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium800/graphic_lcds_loaded-bmp.jpg?1
545441110 800w,
https://cdn-learn.adafruit.com/assets/assets/000/067/997/large1024/graphic_lcds_loaded-bmp.jpg?15
45441110 1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium800/graphic_lcds_loaded-bmp.
jpg?1545441110“ alt=„graphic_lcds_loaded-bmp.jpg“/></div> <div class=„row-fluid build-text“
readability=„37“> <p>Loading .BMP images from an SD card is an option for
most of our color displays…though it’s not built into Adafruit_GFX and must be
separately installed.</p> <p>The Adafruit_ImageReader
library handles this task. It can be installed through the Arduino Library
Manager (Sketch→Include Library→Manage Libraries…). Enter
“imageread” in the search field and the library is easy to spot:</p> </div> <div
class=„row-fluid build-image“ readability=„9“><img class=„67995-asset img-responsive“
srcset=„https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium260/graphic_lcds_install-im
agereader-lib.png?1545427440 260w,
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium640/graphic_lcds_install-imageread
er-lib.png?1545427440 640w,
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium800/graphic_lcds_install-imageread
er-lib.png?1545427440 800w,
https://cdn-learn.adafruit.com/assets/assets/000/067/995/large1024/graphic_lcds_install-imagereader-
lib.png?1545427440 1024w“ sizes=„(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-
width: 1365px) 47vw, 750px“
src=„https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium800/graphic_lcds_install-image
reader-lib.png?1545427440“ alt=„graphic_lcds_install-imagereader-lib.png“/>
<p>That’s “imageread,” not “ermahgerd.”</p> </div> <div
class=„row-fluid build-text“ readability=„37“> <p>The syntax for using this library (and the separate
installation above) are admittedly a bit peculiar…it’s a side-effect
of the way Arduino handles libraries. We purposefully did not roll this into Adafruit_GFX
because any mere mention of the SD library will incur all of that
library’s considerable memory requirements…even if one’s sketch
doesn’t use an SD card at all! A majority of graphics projects are self-contained
and don’t reference files from a card…not everybody needs this functionality.</p>
</div> <div class=„row-fluid build-text“ readability=„34“> <p>There are several example
sketches in the Adafruit_ImageReader/examples folder. You can dissect these for ideas how
to use the library in your own projects.</p> <p>They all start with several #includes…</p>
</div> <div class=„build-code code-element“ readability=„11“> <pre class=„code-text-only
c4“>#include <SPI.h> #include <SD.h> #include <Adafruit_GFX.h> Core graphics
library #include <Adafruit_ImageReader.h> Image-reading functions #include

https://learn.adafruit.com/assets/67997
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium260/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium260/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium640/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium640/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium800/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium800/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/large1024/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/large1024/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium800/graphic_lcds_loaded-bmp.jpg?1545441110
https://cdn-learn.adafruit.com/assets/assets/000/067/997/medium800/graphic_lcds_loaded-bmp.jpg?1545441110
https://learn.adafruit.com/assets/67995
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium260/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium260/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium640/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium640/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium800/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium800/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/large1024/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/large1024/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium800/graphic_lcds_install-imagereader-lib.png?1545427440
https://cdn-learn.adafruit.com/assets/assets/000/067/995/medium800/graphic_lcds_install-imagereader-lib.png?1545427440

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

<Adafruit_ILI9341.h> Hardware-specific library</pre> <pre class=„prettyprint
linenums“>#include <SPI.h> #include <SD.h> #include <Adafruit_GFX.h> Core
graphics library #include <Adafruit_ImageReader.h> Image-reading functions #include
<Adafruit_ILI9341.h> Hardware-specific library</pre></div> <div class=„row-fluid build-text“
readability=„45“> <p>One of these lines may vary from one example to the next, depending which
display hardware it’s written to support. Above we see it being used with the Adafruit_ILI9341
display library required of certain shields, FeatherWings or breakout boards. Others examples
reference Adafruit_HX8357, Adafruit_ST7735, or other color TFT or OLED display libraries…use
the right one for the hardware you have.</p> <p>We declare a display object (called
“tft” in most of the examples) the usual way…for example, with the 2.8 inch
TFT touch shield for Arduino, it’s:</p> </div> <div class=„build-code code-element“
readability=„13“> <pre class=„code-text-only c4“>#define SD_CS 4 SD card select pin #define
TFT_CS 10 TFT select pin #define TFT_DC 9 TFT display/command pin Adafruit_ILI9341 tft =
Adafruit_ILI9341(TFT_CS, TFT_DC);</pre> <pre class=„prettyprint linenums“>#define SD_CS 4 SD
card select pin #define TFT_CS 10 TFT select pin #define TFT_DC 9 TFT display/command pin
Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);</pre></div> <div class=„row-fluid build-
text“ readability=„33“> <p>And then also declare a global Adafruit_ImageReader
object…we’ll call it “reader.” This will be used to access the image-
loading functions later:</p> </div> <div class=„build-code code-element“ readability=„7“> <pre
class=„code-text-only c4“>Adafruit_ImageReader reader; Class w/image-reading functions</pre>
<pre class=„prettyprint linenums“>Adafruit_ImageReader reader; Class w/image-reading
functions</pre></div> <div class=„row-fluid build-text“ readability=„35“> <p>After the SD and
TFT’s

begin()

functions have been called (see the example sketches, in the

setup()

function), you can then call

reader.drawBMP()

to load a BMP image from the card to the screen:</p> </div> <div class=„build-code code-element“
readability=„13“> <pre class=„code-text-only c4“>ImageReturnCode stat; stat =
reader.drawBMP(„/purple.bmp“, tft, 0, 0);</pre> <pre class=„prettyprint
linenums“>ImageReturnCode stat; stat = reader.drawBMP(„/purple.bmp“, tft, 0, 0);</pre></div>
<div class=„row-fluid build-text“ readability=„39“> <p>This accepts four
arguments:</p> A filename in “8.3” format (you shouldn’t
need to provide an absolute path (the leading “/”), but there are some
issues with the SD library on some cutting-edge boards like the ESP32, so go ahead and include this
for good measure). The display object where the image will be drawn (e.g.
“tft”). This is the weird syntax previously mentioned…rather than
tft.drawBMP(), it’s reader.drawBMP(tft), because reasons. An X and Y
coordinate where the top-left corner of the image is positioned (this doesn’t need to be within
screen bounds…the library will clip the image as it’s loaded). 0, 0 will draw the image
at the top-left corner…so if the image dimensions match the screen dimensions, it will fill the
entire screen. <p>This function returns a value of type

2025/08/02 11:59 15/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

ImageReturnCode

, which you can either ignore or use it to provide some diagnostic functionality. Possible values
are:</p>

IMAGE_SUCCESS

 — Image loaded successfully (or was clipped fully off screen, still considered
“successful” in that there was no error).

IMAGE_ERR_FILE_NOT_FOUND

 — Could not open the requested file (check spelling, confirm file actually exists on the
card, make sure it conforms to “8.3” file naming convention (e.g.
“filename.bmp”).

IMAGE_ERR_FORMAT

 — Not a supported image format. Currently only uncompressed 24-bit color
BMPs are supported (more will likely be added over time).

IMAGE_ERR_MALLOC

 — Could not allocate memory for operation (drawBMP() won’t generate this
error, but other ImageReader functions might). <p>Rather than dealing with these values
yourself, you can optionally call a function to display a basic diagnostic message to the Serial
console:</p> </div> <div class=„build-code code-element“ readability=„7“> <pre class=„code-text-
only c4“>reader.printStatus(stat);</pre> <pre class=„prettyprint
linenums“>reader.printStatus(stat);</pre></div> <div class=„row-fluid build-text“
readability=„33“> <p>If you need to know the size of a BMP image
without actually loading it, there’s the

bmpDimensions()

function:</p> </div> <div class=„build-code code-element“ readability=„13“> <pre class=„code-
text-only c4“>int32_t width, height; stat = reader.bmpDimensions(„/parrot.bmp“, &width,
&height);</pre> <pre class=„prettyprint linenums“>int32_t width, height; stat =
reader.bmpDimensions(„/parrot.bmp“, &width, &height);</pre></div> <div class=„row-
fluid build-text“ readability=„32“> <p>This accepts three arguments:</p>
A filename, same rules as the

drawBMP()

function. Pointers to two 32-bit integers. On
successful completion, their contents will be set to the image width and height in pixels. On any error
these values should be ignored (they’re left uninitialized). <p>This function
returns an

ImageReturnCode

Last
update:
2021/12/06
15:24

wallabag:overview-_-adafruit-gfx-graphics-library https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:59

as explained with the

drawBMP()

function above.</p> </div> <div class=„row-fluid build-text“ readability=„41“> <p>Depending on
image size and other factors, loading an image from SD card to screen may take several seconds.
Small images…those that can fit entirely in RAM…can be loaded once and used
repeatedly. This can be handy for frequently-used icons or sprites, as it’s usually much easier
than converting and embedding an image as an array directly in one’s code…a
horrible process.</p> <p>This introduces another ImageReader function plus a new object type,

Adafruit_Image

:</p> </div> <div class=„build-code code-element“ readability=„9“> <pre class=„code-text-only
c4“>Adafruit_Image img; stat = reader.loadBMP(„/wales.bmp“, img);</pre> <pre class=„prettyprint
linenums“>Adafruit_Image img; stat = reader.loadBMP(„/wales.bmp“, img);</pre></div> <div
class=„row-fluid build-text“ readability=„50“> <p>

loadBMP()

accepts two arguments:</p> A filename, same rules as the previous
functions. An

Adafruit_Image

object. This is a slightly more flexible type than the bitmaps used by a few drawing functions in the
GFX library. <p>This returns an

ImageReturnCode

as previously described. If an image is too large to fit in available RAM, a value of

IMAGE_ERR_MALLOC

will be returned. Color images require two bytes per pixel…for example, a 100×25 pixel image
would need 100*25*2 = 5,000 bytes RAM.</p> <p>On success, the

img

object will contain the image in RAM.</p> <p>The

loadBMP()

function is useful only on microcontrollers with considerable RAM, like the Adafruit
“M0” and “M4” boards, or ESP32. Small devices like the Arduino Uno
just can’t cut it. It might be marginally useful on the Arduino Mega with very
small images.</p> <p>After loading, use the

2025/08/02 11:59 17/17 Overview | Adafruit GFX Graphics Library

Qgelm - https://schnipsl.qgelm.de/

img.draw()

function to display an image on the screen:</p> </div> <div class=„build-code code-element“
readability=„11“> <pre class=„code-text-only c4“>img.draw(tft, x, y);</pre> <pre
class=„prettyprint linenums“>img.draw(tft, x, y);</pre></div> <div class=„row-fluid build-text“
readability=„45“> <p>This accepts three arguments:</p> A display
object (e.g. “tft” in most of the examples), similar to how

drawBMP()

worked. An X and Y coordinate for the upper-left corner of the image on the screen, again
similar to

drawBMP()

. <p>We use

img.draw(tft,…)

rather than

tft.drawRGBBitmap(…)

(or other bitmap-drawing functions in the Adafruit_GFX library) because in the future we plan to add
more flexibility with regard to image file formats and types. The

Adafruit_Image

object “understands” a bit about the image that’s been loaded and will call
the appropriate bitmap-rendering function automatically, you won’t have to handle each
separate case on your own.</p> <p>If the image failed to load for any reason,

img.draw()

can still be called, it just won’t do anything. But at least the sketch
won’t crash.</p> </div> </div> This guide was first published on Jul 29, 2012. It was last
updated on Jul 29, 2012. </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-adafruit-gfx-graphics-library

	[Overview | Adafruit GFX Graphics Library]
	Overview | Adafruit GFX Graphics Library

