
2025/08/30 14:37 1/7 Overview | Read-Only Raspberry Pi

Qgelm - https://schnipsl.qgelm.de/

Overview | Read-Only Raspberry Pi

Originalartikel

Backup

<html> <div class=„row-fluid build-text“ readability=„42“> <p>Most microcontroller projects
have an on/off switch or some quick way to cut power, while computers like the
Raspberry Pi require an orderly shutdown procedure…otherwise the SD
card may become corrupted and the system will no longer boot.</p>
<p>Sometimes just cutting power would be a convenient timesaver, or a system may be left to non-
technical users. For installations that don’t require creating or modifying files — such
as a dedicated slideshow kiosk — we can configure the operating system to make it
more resistant to unplanned power cuts.</p> </div> <div class=„row-fluid build-
text“ readability=„40“> <p>Linux — or any substantial computer operating system, Windows
and Mac are the same way — behind the scenes they’re reading and writing all
manner of temporary data to drives (or the SD card with Raspberry Pi). This is why we
normally use the shutdown command: all those files are put away in a known
valid state. But if power is unexpectedly cut, these lingering half-written files can render
a card unbootable…one can try patching it up, but
sometimes there’s no recourse but to wipe the card and reinstall
everything.</p> </div> <div class=„row-fluid build-text“ readability=„52“> <p>The script
we provide here adapts Raspbian to work in a read-only mode.
Temporary files are stored in RAM rather than on the SD card, making it more robust in this regard.
You can just unplug the system when done. The tradeoff…as the read-only name
implies…is that nothing can be written to the card in this state.
Can’t install software, can’t record pictures. So it’s not the
solution to every situation, but may be helpful with certain passive tasks…a slideshow kiosk, a <a
href=„https://learn.adafruit.com/1500-neopixel-led-curtain-with-raspberry-pi-
fadecandy“>Fadecandy server, a Halloween
display, etc.</p> <p>Optionally, you can use a jumper or switch to boot the system into normal
read/write mode to install new software or data. And, as normal, you still have easy access to the
/boot partition if the SD card is mounted on another computer.</p> <p>This guide is
based partly on instructions from petr.io, which in
turn credits Charles Hallard and Mario
Hros…along with community members’ contributions in those threads and
some changes and additions of our own.</p> </div> <div class=„row-fluid build-
text“> This does not work with the X11
desktop / PIXEL. It's strictly for Raspbian Lite right now. Graphical
applications are still possible using SDL, Pygame and so forth, just not X11 at the
moment. Setting up read-only mode should be the very last
step before deploying a project. Get all your code and data on the system, get
software auto-starting as needed, test it normally with the usual boot and shutdown methodology.
It’s easier up-front. Once you’re 100% confident in its operation, then
use the script. Back up the contents of your SD card first.
We’ve tested on a couple versions of Raspbian, but maybe something’s changed, or

https://learn.adafruit.com/read-only-raspberry-pi?view=all
https://www.qgelm.de/wb2html/wb193.html
https://learn.adafruit.com/raspberry-pi-video-looper
https://learn.adafruit.com/1500-neopixel-led-curtain-with-raspberry-pi-fadecandy
https://learn.adafruit.com/1500-neopixel-led-curtain-with-raspberry-pi-fadecandy
https://learn.adafruit.com/animated-snake-eyes-bonnet-for-raspberry-pi
http://petr.io/en/blog/2015/11/09/read-only-raspberry-pi-with-jessie/
http://hallard.me/raspberry-pi-read-only/
http://k3a.me/how-to-make-raspberrypi-truly-read-only-reliable-and-trouble-free/

Last update:
2021/12/06
15:24

wallabag:overview-_-read-only-raspberry-pi https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-read-only-raspberry-pi

https://schnipsl.qgelm.de/ Printed on 2025/08/30 14:37

has been overlooked, and could leave the Pi in a weird intermediate state, or the script might break
compatibility with some other software. No really, back up your
stuff. </div> <div class=„row-fluid build-text“ readability=„39“> <p>Pi should
be booted and on the network…like mentioned above, everything already configured and fully
functional (and backed up) before taking this step.</p> <p>THIS SEQUENCE IS
IRREVERSIBLE. We don’t have an uninstall script. There’s an option to
boot into read/write mode, but nothing to back out all these
changes.</p> <p>From a command line prompt:</p> </div> <div class=„build-
code“ readability=„8“> <p> <a href=„https://learn.adafruit.com/read-only-raspberry-pi?view=all#“
class=„code-copy-button“>Copy Code </p> <pre class=„prettyprint linenums“>wget
https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/read-only-fs.sh sudo
bash read-only-fs.sh</pre> </div> <div class=„row-fluid build-text“ readability=„33“> <p>The
script will repeat all these stern warnings and make you verify at several steps whether to continue.
Along the way you’ll be presented with a few options:</p> </div> <div class=„row-fluid
build-text“ readability=„33“> <p>Enable boot-time read/write jumper? [y/N]</p>
<p>This gives you the option to run the system in read/write mode by inserting a jumper
across two pins…</p> </div> <table class=„build-table“ readability=„5“><tr class=„build-
row“ readability=„11“><td class=„side-images“> </td> <td class=„side-text“
readability=„34“><div class=„text“ readability=„44“><p>If you answer yes to this question,
you’ll also be asked for a GPIO pin number. When there’s
a jumper between this pin and ground, the system will boot into
read/write mode and you can make changes (but remember to do a
proper shutdown).</p> <p>Make sure the pin isn’t used by anything else (like if
you have a PiTFT display attached). GPIO21 is easy to remember because
it’s right at the end of the header. If you’re using I2S audio
though, that requires GPIO21 for its own use, so you’ll want to pick another.</p></div></td>
</tr></table><div class=„row-fluid build-text“ readability=„40“> <p>Install GPIO-halt
utility? [y/N]</p> <p>This installs a utility that initiates a proper shutdown when another
GPIO pin is touched to ground.</p> <p>For a read-only system, you probably
don’t need this…but I’m a little paranoid…or, if you have the
system booted in read/write mode, this provides an option if you can’t log in and
run a manual shutdown.</p> </div> <table class=„build-table“ readability=„1“><tr
class=„build-row“ readability=„3“><td class=„side-images“> <li class=„medium-side“> <img class=„46754-
asset medium-side-image img-responsive“
src=„https://cdn-learn.adafruit.com/assets/assets/000/046/754/medium640/raspberry_pi_button.jpg?1
506538137“ alt=„raspberry_pi_button.jpg“/> </td> <td class=„side-text“
readability=„29“><div class=„text“ readability=„33“><p>This likewise will ask for a GPIO pin
number. Use the map above. How about GPIO16? It’s right next to a ground pin and we can
use one of these button quick-connects.</p></div></td> </tr></table><div class=„row-fluid build-
text“ readability=„44“> <p>Enable kernel panic watchdog? [y/N]</p> <p>This
option enables software to automatically reboot the system in the event of a kernel panic (a low-level
system crash). This is actually pretty rare though, and is not the only way in which programs may
crash on the system. You might want to set up your code to auto-restart using
systemd, but that’s a whole book in itself.</p> <p>(The
selections here are based on comments in the previously-mentioned blog posts…but in
practice the impression I’m getting is that it may be related more to the OS version than the
specific hardware. This option might change or be removed in the future.)</p> </div> <div
class=„row-fluid build-text“ readability=„36“> <p>One last confirmation before the script runs. It
may take 5 to 10 minutes, depending on the processor, network and SD card speed. You'll see a few

https://learn.adafruit.com/read-only-raspberry-pi?view=all#
https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/read-only-fs.sh
https://learn.adafruit.com/assets/46754
https://cdn-learn.adafruit.com/assets/assets/000/046/754/medium640/raspberry_pi_button.jpg?1506538137
https://cdn-learn.adafruit.com/assets/assets/000/046/754/medium640/raspberry_pi_button.jpg?1506538137

2025/08/30 14:37 3/7 Overview | Read-Only Raspberry Pi

Qgelm - https://schnipsl.qgelm.de/

warnings along the way, these can be ignored.</p> </div> <div class=„row-fluid build-text“
readability=„47“> <p>Test the modified system to make sure that the system
boots and your application runs as intended. Try a pass with the read/write jumper and/or the gpio-
halt button, if you’ve enabled either of those options.</p> <p>Now make an image
of the SD card (using dd or Apple Pi Baker or
whatever your backup tool of preference) and, if it’s a critical application, burn
at least one spare. There are other ways cards can go bad…static,
brown-outs, falling out and getting lost…this read-only setup won’t always save you.
SD cards are cheap now! Spares help if you’ve left a system in someone
else’s care (let’s say a museum kiosk) and it fails for some reason, you can ask them
to just swap out the card until you can get there to troubleshoot. I know at least one
Burning Man project rendered useless in the first few minutes of the
event because their one and only card fell out and was lost on the playa.</p> </div> <div
class=„row-fluid build-text“ readability=„32“> <p>Here's the code 'in line' in case you want to
review it here (also, it will print in the PDF)</p> </div> <div class=„build-code“ readability=„97“>
<p> <a href=„https://learn.adafruit.com/read-only-raspberry-pi?view=all#“ class=„code-copy-
button“>Copy Code </p> <pre class=„prettyprint linenums“>#!/bin/bash # CREDIT TO THESE
TUTORIALS: # petr.io/en/blog/2015/11/09/read-only-raspberry-pi-with-jessie # hallard.me/raspberry-
pi-read-only # k3a.me/how-to-make-raspberrypi-truly-read-only-reliable-and-trouble-free if [$(id -u) -
ne 0]; then

echo "Installer must be run as root."
echo "Try 'sudo bash $0'"
exit 1

fi clear echo „This script configures a Raspberry Pi“ echo „SD card to boot into read-only mode,“ echo
„obviating need for clean shutdown.“ echo „NO FILES ON THE CARD CAN BE CHANGED“ echo „WHEN
PI IS BOOTED IN THIS STATE. Either“ echo „the filesystems must be remounted in“ echo „read/write
mode, card must be mounted“ echo „R/W on another system, or an optional“ echo „jumper can be
used to enable read/write“ echo „on boot.“ echo echo „Links to original tutorials are in“ echo „script
source. THIS IS A ONE-WAY“ echo „OPERATION. THERE IS NO SCRIPT TO“ echo „REVERSE THIS SETUP!
ALL other system“ echo „config should be complete before using“ echo „this script. MAKE A BACKUP
FIRST.“ echo echo „Run time ~5 minutes. Reboot required.“ echo echo -n „CONTINUE? [y/N] “ read if
y|Y)$; then

echo "Canceled."
exit 0

fi # FEATURE PROMPTS ———————————————————- # Installation doesn't begin until after
all user input is taken. INSTALL_RW_JUMPER=0 INSTALL_HALT=0 INSTALL_WATCHDOG=0 # Given a
list of strings representing options, display each option # preceded by a number (1 to N), display a
prompt, check input until # a valid number within the selection range is entered. selectN() {

for ((i=1; i<=$#; i++)); do
 echo $i. ${!i}
done
echo
REPLY=""
while :
do
 echo -n "SELECT 1-$#: "

https://learn.adafruit.com/read-only-raspberry-pi?view=all#
https://schnipsl.qgelm.de/doku.php?id=wallabag:reply_yes

Last update:
2021/12/06
15:24

wallabag:overview-_-read-only-raspberry-pi https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-read-only-raspberry-pi

https://schnipsl.qgelm.de/ Printed on 2025/08/30 14:37

 read
 if [[$REPLY -ge 1]] && [[$REPLY -le $#]]; then
 return $REPLY
 fi
done

} SYS_TYPES=(Pi\ 3\ /\ Pi\ Zero\ W All\ other\ models) WATCHDOG_MODULES=(bcm2835_wdog
bcm2708_wdog) OPTION_NAMES=(NO YES) echo -n „Enable boot-time read/write jumper? [y/N] “ read
if y|Y)$; then

INSTALL_RW_JUMPER=1
echo -n "GPIO pin for R/W jumper: "
read
RW_PIN=$REPLY

fi echo -n „Install GPIO-halt utility? [y/N] “ read if y|Y)$; then

INSTALL_HALT=1
echo -n "GPIO pin for halt button: "
read
HALT_PIN=$REPLY

fi echo -n „Enable kernel panic watchdog? [y/N] “ read if y|Y)$; then

INSTALL_WATCHDOG=1
echo "Target system type:"
selectN "${SYS_TYPES[0]}" \
 "${SYS_TYPES[1]}"
WD_TARGET=$?

fi # VERIFY SELECTIONS BEFORE CONTINUING ————————————– echo if [
$INSTALL_RW_JUMPER -eq 1]; then

echo "Boot-time R/W jumper: YES (GPIO$RW_PIN)"

else

echo "Boot-time R/W jumper: NO"

fi if [$INSTALL_HALT -eq 1]; then

echo "Install GPIO-halt: YES (GPIO$HALT_PIN)"

else

echo "Install GPIO-halt: NO"

fi if [$INSTALL_WATCHDOG -eq 1]; then

https://schnipsl.qgelm.de/doku.php?id=wallabag:reply_yes
https://schnipsl.qgelm.de/doku.php?id=wallabag:reply_yes
https://schnipsl.qgelm.de/doku.php?id=wallabag:reply_yes

2025/08/30 14:37 5/7 Overview | Read-Only Raspberry Pi

Qgelm - https://schnipsl.qgelm.de/

echo "Enable watchdog: YES (${SYS_TYPES[WD_TARGET-1]})"

else

echo "Enable watchdog: NO"

fi echo echo -n „CONTINUE? [y/N] “ read if y|Y)$; then

echo "Canceled."
exit 0

fi # START INSTALL ———————————————————— # All selections have been validated at
this point… # Given a filename, a regex pattern to match and a replacement string: # Replace string
if found, else no change. # (# $1 = filename, $2 = pattern to match, $3 = replacement) replace() {

grep $2 $1 >/dev/null
if [$? -eq 0]; then
 # Pattern found; replace in file
 sed -i "s/$2/$3/g" $1 >/dev/null
fi

} # Given a filename, a regex pattern to match and a replacement string: # If found, perform
replacement, else append file w/replacement on new line. replaceAppend() {

grep $2 $1 >/dev/null
if [$? -eq 0]; then
 # Pattern found; replace in file
 sed -i "s/$2/$3/g" $1 >/dev/null
else
 # Not found; append on new line (silently)
 echo $3 | sudo tee -a $1 >/dev/null
fi

} # Given a filename, a regex pattern to match and a string: # If found, no change, else append file
with string on new line. append1() {

grep $2 $1 >/dev/null
if [$? -ne 0]; then
 # Not found; append on new line (silently)
 echo $3 | sudo tee -a $1 >/dev/null
fi

} # Given a filename, a regex pattern to match and a string: # If found, no change, else append
space + string to last line – # this is used for the single-line /boot/cmdline.txt file. append2() {

grep $2 $1 >/dev/null
if [$? -ne 0]; then
 # Not found; insert in file before EOF
 sed -i "s/\'/ $3/g" $1 >/dev/null

https://schnipsl.qgelm.de/doku.php?id=wallabag:reply_yes

Last update:
2021/12/06
15:24

wallabag:overview-_-read-only-raspberry-pi https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-read-only-raspberry-pi

https://schnipsl.qgelm.de/ Printed on 2025/08/30 14:37

fi

} echo echo „Starting installation…“ echo „Updating package index files…“ apt-get update echo
„Removing unwanted packages…“ #apt-get remove -y –force-yes –purge triggerhappy cron logrotate
dbus \ # dphys-swapfile xserver-common lightdm fake-hwclock # Let's keep dbus…that includes
avahi-daemon, a la 'raspberrypi.local', # also keeping xserver & lightdm for GUI login (WIP, not
working yet) apt-get remove -y –force-yes –purge triggerhappy cron logrotate \ dphys-swapfile fake-
hwclock apt-get -y –force-yes autoremove –purge # Replace log management with busybox (use
logread if needed) echo „Installing busybox-syslogd…“ apt-get -y –force-yes install busybox-syslogd;
dpkg –purge rsyslog echo „Configuring system…“ # Install boot-time R/W jumper test if requested
GPIOTEST=„gpio -g mode $RW_PIN up\n\ if [\`gpio -g read $RW_PIN\` -eq 0] ; then\n\ \tmount -o
remount,rw \/\n\ \tmount -o remount,rw \/boot\n\ fi\n“ if [$INSTALL_RW_JUMPER -ne 0]; then

apt-get install -y --force-yes wiringpi
Check if already present in rc.local:
grep "gpio -g read" /etc/rc.local >/dev/null
if [$? -eq 0]; then
 # Already there, but make sure pin is correct:
 sed -i "s/^.*gpio\ -g\ read.*$/$GPIOTEST/g" /etc/rc.local >/dev/null
else
 # Not there, insert before final 'exit 0'
 sed -i "s/^exit 0/$GPIOTEST\\nexit 0/g" /etc/rc.local >/dev/null
fi

fi # Install watchdog if requested if [$INSTALL_WATCHDOG -ne 0]; then

apt-get install -y --force-yes watchdog
$MODULE is specific watchdog module name
MODULE=${WATCHDOG_MODULES[($WD_TARGET-1)]}
Add to /etc/modules, update watchdog config file
append1 /etc/modules $MODULE $MODULE
replace /etc/watchdog.conf "#watchdog-device" "watchdog-device"
replace /etc/watchdog.conf "#max-load-1" "max-load-1"
Start watchdog at system start and start right away
Raspbian Stretch needs this package installed first
apt-get install -y --force-yes insserv
insserv watchdog; /etc/init.d/watchdog start
Additional settings needed on Jessie
append1 /lib/systemd/system/watchdog.service "WantedBy" "WantedBy=multi-
user.target"
systemctl enable watchdog
Set up automatic reboot in sysctl.conf
replaceAppend /etc/sysctl.conf "^.*kernel.panic.*$" "kernel.panic = 10"

fi # Install gpio-halt if requested if [$INSTALL_HALT -ne 0]; then

apt-get install -y --force-yes wiringpi
echo "Installing gpio-halt in /usr/local/bin..."
cd /tmp

2025/08/30 14:37 7/7 Overview | Read-Only Raspberry Pi

Qgelm - https://schnipsl.qgelm.de/

curl -LO https://github.com/adafruit/Adafruit-GPIO-Halt/archive/master.zip
unzip master.zip
cd Adafruit-GPIO-Halt-master
make
mv gpio-halt /usr/local/bin
cd ..
rm -rf Adafruit-GPIO-Halt-master
Add gpio-halt to /rc.local:
grep gpio-halt /etc/rc.local >/dev/null
if [$? -eq 0]; then
 # gpio-halt already in rc.local, but make sure correct:
 sed -i "s/^.*gpio-halt.*$/\/usr\/local\/bin\/gpio-halt $HALT_PIN
\&/g" /etc/rc.local >/dev/null
else
 # Insert gpio-halt into rc.local before final 'exit 0'
 sed -i "s/^exit 0/\/usr\/local\/bin\/gpio-halt $HALT_PIN \&\\nexit
0/g" /etc/rc.local >/dev/null
fi

fi # Add fastboot, noswap and/or ro to end of /boot/cmdline.txt append2 /boot/cmdline.txt fastboot
fastboot append2 /boot/cmdline.txt noswap noswap append2 /boot/cmdline.txt ro^o^t ro # Move
/var/spool to /tmp rm -rf /var/spool ln -s /tmp /var/spool # Move /var/lib/lightdm and
/var/cache/lightdm to /tmp rm -rf /var/lib/lightdm rm -rf /var/cache/lightdm ln -s /tmp /var/lib/lightdm
ln -s /tmp /var/cache/lightdm # Make SSH work replaceAppend /etc/ssh/sshd_config
„^.*UsePrivilegeSeparation.*$“ „UsePrivilegeSeparation no“ # bbro method (not working in Jessie?):
#rmdir /var/run/sshd #ln -s /tmp /var/run/sshd # Change spool permissions in var.conf
(rondie/Margaret fix) replace /usr/lib/tmpfiles.d/var.conf „spool\s*0755“ „spool 1777“ # Move
dhcpd.resolv.conf to tmpfs touch /tmp/dhcpcd.resolv.conf rm /etc/resolv.conf ln -s
/tmp/dhcpcd.resolv.conf /etc/resolv.conf # Make edits to fstab # make / ro # tmpfs /var/log tmpfs
nodev,nosuid 0 0 # tmpfs /var/tmp tmpfs nodev,nosuid 0 0 # tmpfs /tmp tmpfs nodev,nosuid 0 0
replace /etc/fstab „vfat\s*defaults\s“ „vfat defaults,ro “ replace /etc/fstab „ext4\s*defaults,noatime\s“
„ext4 defaults,noatime,ro “ append1 /etc/fstab „/var/log“ „tmpfs /var/log tmpfs nodev,nosuid 0 0“
append1 /etc/fstab „/var/tmp“ „tmpfs /var/tmp tmpfs nodev,nosuid 0 0“ append1 /etc/fstab „\s/tmp“
„tmpfs /tmp tmpfs nodev,nosuid 0 0“ # PROMPT FOR REBOOT ——————————————————–
echo „Done.“ echo echo „Settings take effect on next boot.“ echo echo -n „REBOOT NOW? [y/N] “
read if y|Y)$; then

echo "Exiting without reboot."
exit 0

fi echo „Reboot started…“ reboot exit 0 </pre> </div> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-read-only-raspberry-pi

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/doku.php?id=wallabag:reply_yes
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-read-only-raspberry-pi

	[Overview | Read-Only Raspberry Pi]
	Overview | Read-Only Raspberry Pi

