2025/08/02 20:33 1/9 Overview | Stand-alone programming AVRs using CircuitPython

Overview | Stand-alone programming AVRs using
CircuitPython

Originalartikel
Backup

<html> <div class=,page-content all-page-view-content” readability=,54“> <div class=, row-fluid
build-image“><img class=,49926-asset img-
responsive”

srcset=, https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium260/hacks_icon t.png?1515
373660 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium640/hacks_icon t.png?1515373660
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium800/hacks_icon t.png?1515373660
800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/926/large1024/hacks_icon_t.png?1515373660
1024w" sizes=, (max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px*“
src=,https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium800/hacks_icon_t.png?151537
3660 alt=,hacks_icon_t.png“/></div> <div class=,row-fluid build-text” readability=,44">
<p>If you've ever wanted a stand alone AVR programmer, that is super easy to use,
you've come to the right place!</p> <p>This guide will show you how to turn any CircuitPython
powered board with 4+ GPIO pins into an AVR progammer all on its own. No software like
avrdude is needed, this software will program the chip all on its own, just drag the HEX file
onto the CircuitPython disk drive.</p> <p>Perfect to putting bootloaders on empty chips, or field-
reprogramming a project!</p> </div> <div class=,row-fluid build-text” readability=,44"“> <p>In
theory, any and all AVR chips with SPI-programming interfaces are supported. However, we only have
examples for ATmega328P chips (used in Arduino compatibles),
ATtiny85 (used in original Trinket/Gemma), and ATmega2560
(Arduino Mega compatibles)</p> <p>To program other chips, you'll need to find out the signature,
size of the flash, and the flash-page size. You can find this in the datasheet or in

avrdude. conf

</p> </div> <p>This code only supports SPI-based programming, not JTAG, SWD or parallel!</p>
</div><div class=,page-content all-page-view-content” readability=,64“> <div class=,row-fluid
build-text” readability=,47“> <p>Nearly all AVRs have a 'serial' programming interface, that's what
we'll be using to program them. If your chip requires SWD, JTAG or parallel, this software won't
work!</p> <p>In this example we'll show how to wire up an existing Arduino 328P compatible or raw
328P chip to a Feather MO for programming</p> <p>For other chips, the wiring is similar, but you'll
need to look up which pins are Power, Ground, Reset, and SCK/MOSI/MISO</p> </div> <div
class=,row-fluid build-text readability=,31“> <h2>Power Pins</h2> <p>Do these pins first
because they're easy to forget!</p> If connecting to a Arduino-compatible: connect
GND on the Arduino to GND on the Feather. Then either plug
the Arduino into USB, or connect the Arduino 5V to Feather
USB If connecting to a bare chip: connect both GND
pins together and to the Feather GND. Connect AVCC to
VCC to the Feather 3V pin </div> <p>If you're

Qgelm - https://schnipsl.qgelm.de/

https://learn.adafruit.com/stand-alone-programming-avrs-using-circuitpython?view=all
https://www.qgelm.de/wb2html/wb284.html
https://learn.adafruit.com/assets/49926
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium260/hacks_icon_t.png?1515373660
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium260/hacks_icon_t.png?1515373660
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium640/hacks_icon_t.png?1515373660
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium800/hacks_icon_t.png?1515373660
https://cdn-learn.adafruit.com/assets/assets/000/049/926/large1024/hacks_icon_t.png?1515373660
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium800/hacks_icon_t.png?1515373660
https://cdn-learn.adafruit.com/assets/assets/000/049/926/medium800/hacks_icon_t.png?1515373660

Last
update:
2021/12/06
15:24

wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython

breadboarding a bare ATMega328 chip, don't forget there are *two* power pins and *two* ground
pins</p> <div class=,row-fluid build-text” readability=,38“> Connect the
CircuitPython SCK pin to the target SCK
(on Uno/Atmega328 this is also known as Digital #13) Connect the
CircuitPython MISO pin to the target MISO
(on Uno/Atmega328 this is also known as Digital #12) Connect the
CircuitPython MOSI pin to the target MOSI
(on Uno/Atmega328 this is also known as Digital #11) Connect CircuitPython
D5 (or any digital pin, as long as you change the code too) to the target
RESET <p>If you are breadboarding a chip, it may need a clock or
crystal and it needs to be there to program the chip! If your board has a crystal or oscillator already,
skip this. If you're programming a 'raw' ATmega328, you'll want to add it:</p> Connect
CircuitPython D9 (or any digital pin with PWM out, as long as you change the code to) to the target
XTAL1 </div> <div class=,row-fluid build-image“><img class=,49998-asset img-responsive“

srcset=, https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium260/hacks_rawchip.png?15
15718660 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium640/hacks_rawchip.png?151571866
0 640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium800/hacks_rawchip.png?151571866
0 800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/998/large1024/hacks_rawchip.png?1515718660
1024w" sizes=, (max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px*“
src=,https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium800/hacks_rawchip.png?1515
718660 alt=,hacks_rawchip.png“/></div> <p><a
href=,,https://cdn-learn.adafruit.com/assets/assets/000/050/008/original/featherchip.fzz?1515724984"
class=,btn btn-large btn-block btn-primary” target=,_self” type=, button“>Fritzing for
diagram</p> <table class=,build-table” readability=,1“><tr class=,build-row”
readability=,3“><td class=,side-images”> <li class=,medium-side“><a class=,large-side-
image-link” href=,,https://learn.adafruit.com/assets/49999“><img class=,49999-asset medium-side-
image img-responsive”
src=,https://cdn-learn.adafruit.com/assets/assets/000/049/999/medium640/hacks 328p pins.png?151
5718791 alt=,hacks_328p_pins.png“/> </td> <td class=,,side-text"
readability=,28"> <div class=,,text" readability=,31"“> VCC lines are
Red Ground/GND lines are
Black SCK is green
MOSI is blue MISO is yellow
RESET is purple XTAL is grey
<p>Notice that the notch on the chip is to the right - away from the Feather!</p>
</div> </td> </tr></table> <div class=,row-fluid build-image“><img class=,50000-asset img-responsive“

srcset=, https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium260/hacks_unoprog.png?15
15719126 260w,
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium640/hacks_unoprog.png?151571912
6 640w,
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium800/hacks_unoprog.png?151571912
6 800w,

https://cdn-learn.adafruit.com/assets/assets/000/050/000/large1024/hacks unoprog.png?1515719126
1024w" sizes=,(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,

https://schnipsl.qgelm.de/ Printed on 2025/08/02 20:33

https://learn.adafruit.com/assets/49998
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium260/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium260/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium640/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium640/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium800/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium800/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/large1024/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium800/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/049/998/medium800/hacks_rawchip.png?1515718660
https://cdn-learn.adafruit.com/assets/assets/000/050/008/original/featherchip.fzz?1515724984
https://learn.adafruit.com/assets/49999
https://cdn-learn.adafruit.com/assets/assets/000/049/999/medium640/hacks_328p_pins.png?1515718791
https://cdn-learn.adafruit.com/assets/assets/000/049/999/medium640/hacks_328p_pins.png?1515718791
https://learn.adafruit.com/assets/50000
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium260/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium260/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium640/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium640/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium800/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium800/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/000/large1024/hacks_unoprog.png?1515719126

2025/08/02 20:33 3/9 Overview | Stand-alone programming AVRs using CircuitPython

750px*
src=,https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium800/hacks_unoprog.png?1515
719126" alt=,hacks_unoprog.png“/></div> <p><a

href=, https://cdn-learn.adafruit.com/assets/assets/000/050/009/original/featheruno.fzz?1515725024"
class=,btn btn-large btn-block btn-primary“ target=,_self* type=, button“>Fritzing for
diagram</p> <div class=,row-fluid build-text” readability=,40“> <p>For Arduino UNO and
compatibles, we recommend powering from USB or DC power. Then connect GND
pins together, and wire up Reset, SCK,
MOSI, and MISO as seen above.</p>
<p>XTAL pin is not required, Arduinos have on-board crystals.</p> </div>
</div><div class=, page-content all-page-view-content” readability=,80"> <div class=, row-fluid
build-text” readability=,35“> <p>To use the AVR programming library you'll need to install
the Adafruit
CircuitPython AVRprog library on your CircuitPython board.</p> <p>First make sure you are
running the latest version of
Adafruit CircuitPython for your board.</p> <p>Next you'll need to install the necessary
libraries to use the hardware-carefully follow the steps to find and install these libraries
from Adafruit's
CircuitPython library bundle. Our introduction guide has a great page on
how to install the library bundle for both express and non-express boards.</p>
<p>Remember for non-express boards like the, you'll need to manually install the necessary library
from the bundle:</p> adafruit_avrprog.mpy <p>You can also
download the adafruit_avrprog.mpy from its releases page on
Github.</p> <p>Before continuing make sure your board's lib folder or root filesystem has
the adafruit_avrprog.mpy file copied over.</p> </div> <div class=,row-
fluid build-image“><img class=,49927-asset
img-responsive”
srcset=,,https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium260/hacks_lib.png?151537
3870 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium640/hacks_lib.png?1515373870
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium800/hacks_lib.png?1515373870
800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/927/largel024/hacks_lib.png?1515373870
1024w* sizes=, (max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px*
src=,https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium800/hacks _lib.png?151537387
0“ alt=,hacks_lib.png“/></div> <div class=,row-fluid build-text” readability=,18">
<p>Next connect to
the board's serial REPL s0 you are at the
CircuitPython > > > prompt.</p> </div> <p>For this simple
example, we're assuming you don't need a clock-driving pin here, if you do, see the full example at
the end of the page!</p> <div class=,row-fluid build-text” readability=,31"“> <h2>Imports</h2>
<p>You'll need to import a few libraries</p>

board

- for assigning hardware pins

Qgelm - https://schnipsl.qgelm.de/

https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium800/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/000/medium800/hacks_unoprog.png?1515719126
https://cdn-learn.adafruit.com/assets/assets/000/050/009/original/featheruno.fzz?1515725024
https://github.com/adafruit/Adafruit_CircuitPython_AVRprog
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_AVRprog/releases
https://learn.adafruit.com/assets/49927
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium260/hacks_lib.png?1515373870
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium260/hacks_lib.png?1515373870
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium640/hacks_lib.png?1515373870
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium800/hacks_lib.png?1515373870
https://cdn-learn.adafruit.com/assets/assets/000/049/927/large1024/hacks_lib.png?1515373870
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium800/hacks_lib.png?1515373870
https://cdn-learn.adafruit.com/assets/assets/000/049/927/medium800/hacks_lib.png?1515373870
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Last
update:
2021/12/06
15:24

wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython

busio
- we use SPI bus to talk to the target device
adafruit avrprog

- the library that we're using! </div> <div class=,build-code code-element”
readability=,7“> <pre class=,code-text-only c4“> >>> import board >>> import
busio >>> import adafruit_avrprog </pre> <pre class=, prettyprint linenums“> >>>
import board >>> import busio >> > import adafruit_avrprog </pre></div> <div
class=,row-fluid build-image“><img
class=,49928-asset img-responsive”

srcset=, https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium260/hacks_imports.png?15
15374293 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium640/hacks_imports.png?151537429
3 640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium800/hacks_imports.png?151537429
3 800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/928/large1024/hacks_imports.png?1515374293
1024w" sizes=,(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px*“
src=,https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium800/hacks_imports.png?15153
74293" alt=, hacks_imports.png“/></div> <div class=,row-fluid build-text” readability=,36“>
<h2>Initialize hardware</h2> <p>Next, create the hardware interface, you'll need an SPI port and
one extra pin for the reset line. We'll use

board.D5

to match our diagrams on the previous page, but it can be any pin you like!</p> </div>
<div class=,build-code code-element” readability=,15"“> <pre class=, code-text-only c4“>

> > &at; spi = busio.SPI(board.SCK, board.MOSI, board.MISO) >> > avrprog =
adafruit_avrprog.AVRprog() >>> avrprog.init(spi, board.D5) </pre> <pre class=, prettyprint
linenums“> >> > spi = busio.SPI(board.SCK, board.MOSI, board.MISO) >> > avrprog =
adafruit_avrprog.AVRprog() >>> avrprog.init(spi, board.D5) </pre></div> <div class=,row-
fluid build-text” readability=,34"> <h2>Communication / Signature Check</h2> <p>Next we'll
verify that we can talk to the chip, once that works we are best off crafting our programmer into a full
main.py project but at least we can quickly determine if things worked out.</p>
Start by initializing the programming interface with

avrprog.begin()

which will pull the reset line low and send some commands to get the chip to
listen. Then read the signature, you'll get an array of numbers - its probably best to turn this
into hex values before printing since they're referred to as hex values in datasheets. Finally,
call

avrprog.end()

 </div> <div class=,build-code code-element” readability=,13“> <pre class=,code-text-

https://schnipsl.qgelm.de/ Printed on 2025/08/02 20:33

https://learn.adafruit.com/assets/49928
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium260/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium260/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium640/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium640/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium800/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium800/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/large1024/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium800/hacks_imports.png?1515374293
https://cdn-learn.adafruit.com/assets/assets/000/049/928/medium800/hacks_imports.png?1515374293

2025/08/02 20:33 5/9 Overview | Stand-alone programming AVRs using CircuitPython

only c4“> >>&at; avrprog.begin() >> > [hex(i) for i in avrprog.read_signature()] ['0x1e’,
'0x95', '0xf'] > >> avrprog.end() </pre> <pre class=, prettyprint linenums“> >>>
avrprog.begin() >>> [hex(i) for i in avrprog.read_signature()] ['Ox1e’, '0x95', '0xf']
>>> avrprog.end() </pre></div> <div class=,row-fluid build-image“><img class=,49930-asset img-responsive“

srcset=, https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium260/hacks_sigtest.png?151
5374642 260w,
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium640/hacks_sigtest.png?1515374642
640w,
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium800/hacks_sigtest.png?1515374642
800w,
https://cdn-learn.adafruit.com/assets/assets/000/049/930/large1024/hacks_sigtest.png?1515374642
1024w" sizes=, (max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px*“
src=,https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium800/hacks_sigtest.png?15153
74642" alt=,hacks_sigtest.png“/></div> <div class=,row-fluid build-text” readability=,32“>
<p>You can see here we have a Ox1E950F chip attached, also known at an
ATmega328P</p> </div> <div class=,row-fluid build-text” readability=,34">
<p>You can save this code to main.py and use the REPL to see the signature
data, it also includes the code for setting up the crystal-driving PWM output</p> </div> <div
class=,build-code code-element” readability=,29“> <pre class=,code-text-only c4“> ,“, Read
Signature Test - All this does is read the signature from the chip to check connectivity! “,“ import
board import busio import pulseio import adafruit_avrprog spi = busio.SPI(board.SCK, board.MOSI,
board.MISO) avrprog = adafruit_avrprog.AVRprog() avrprog.init(spi, board.D5) # we can generate an
6 MHz clock for driving bare chips too! clock_pwm = pulseio.PWMOut(board.D9, frequency=6000000,
duty_cycle=655362) avrprog.begin() print(,Signature bytes: “, [hex(i) for i in
avrprog.read_signature()]) avrprog.end() </pre> <pre class=,prettyprint linenums“> ,“, Read
Signature Test - All this does is read the signature from the chip to check connectivity! “,“ import
board import busio import pulseio import adafruit_avrprog spi = busio.SPI(board.SCK, board.MOSI,
board.MISO) avrprog = adafruit_avrprog.AVRprog() avrprog.init(spi, board.D5) # we can generate an
6 MHz clock for driving bare chips too! clock_pwm = pulseio.PWMOut(board.D9, frequency=6000000,
duty cycle=655362) avrprog.begin() print(,Signature bytes: “, [hex(i) foriin
avrprog.read_signature()]) avrprog.end() </pre></div> <div class=,row-fluid build-text”
readability=,36"“> <h2>SPI / Wiring Errors</h2> <p>If something went wrong, you'll get an

SPI transaction failed

exception. Check your wiring! Also, sometimes the chip doesn't quite hear us, try connecting
again.</p> <p>Common problems:</p> The target isn't powered -
make sure it is powered via USB or via the CircuitPython board. A shared Ground wire is
required Make sure you have the reset pin on the target connected to
whatever pin you setup when you created the

avrprog

object 0On ATmega2560, MOSI and MISO are connected opposite than the way you think.
Either way, its OK to try swapping those two wires, see if that helps! The target is expecting
a crystal but you don't have one, for example the UNO bootloader requires that the chip have a
crystal or oscillator connected up, it's not optional! </div> </div><div class=,page-
content all-page-view-content” readability=,52“> <div class=,row-fluid build-text"
readability=,28“> <p>0OK now that you've read the signature, you can write some code!</p>

Qgelm - https://schnipsl.qgelm.de/

https://learn.adafruit.com/assets/49930
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium260/hacks_sigtest.png?1515374642
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium260/hacks_sigtest.png?1515374642
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium640/hacks_sigtest.png?1515374642
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium800/hacks_sigtest.png?1515374642
https://cdn-learn.adafruit.com/assets/assets/000/049/930/large1024/hacks_sigtest.png?1515374642
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium800/hacks_sigtest.png?1515374642
https://cdn-learn.adafruit.com/assets/assets/000/049/930/medium800/hacks_sigtest.png?1515374642

Last
update:
2021/12/06
15:24

wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython

<p>We have a
few examples available you can use 'out of the box' - all are available here. You can download the
library zip to get all the files. For each programming demo, we also have a matching 'hex' file,
that's a requirement - it's the file you'll be programming into the chip!</p> <p>Copy the
programming sketch into main.py and also grab the matching hex file. For
example:</p> </div> <div class=,build-code code-element” readability=,23“> <pre class=,code-
text-only c4“> ", UNO Optiboot programming example, be sure you have the UNO wired up so:

UNO Ground to CircuitPython GND

UNO 5V to CircuitPython USB or make sure the UNO is powered by USB

UNO Pin 13 -> CircuitPython SCK

UNO Pin 12 -> CircuitPython MISO

UNO Pin 11 -> CircuitPython MOSI

UNO RESET -> CircuitPython D5 (or change the init() below to change it!)

u

Drag , optiboot_atmega328.hex* onto the CircuitPython disk drive, then open REPL! “,,“ </pre> <pre
class=,prettyprint linenums“> ,“, UNO Optiboot programming example, be sure you have the UNO

wired up so:

UNO Ground to CircuitPython GND

UNO 5V to CircuitPython USB or make sure the UNO is powered by USB

UNO Pin 13 -> CircuitPython SCK

UNO Pin 12 -> CircuitPython MISO

UNO Pin 11 -> CircuitPython MOSI

UNO RESET -> CircuitPython D5 (or change the init() below to change it!)

Drag ,optiboot_atmega328.hex” onto the CircuitPython disk drive, then open REPL! “,“ </pre></div>
<div class=,row-fluid build-text” readability=,31“> <p>Indicates you need
optiboot_atmega328.hex</p> </div> <div class=,row-fluid build-image“><img class=,50007-asset img-responsive“

srcset=, https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium260/hacks_files.png?15157
22077 260w,
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium640/hacks files.png?1515722077
640w,
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium800/hacks_files.png?1515722077
800w,
https://cdn-learn.adafruit.com/assets/assets/000/050/007/large1024/hacks_files.png?1515722077
1024w" sizes=,(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px*“
src=,https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium800/hacks files.png?1515722
077 alt=,hacks files.png“/></div> <div class=,row-fluid build-text” readability=,38"“>
<p>Then run the REPL and look for the

Ready to GO, type 'G' here to start >
prompt and type the letter G into the REPL. You should see the code begin by checking the identity of

the chip (the signature), erasing the chip, then programming it.</p> </div> <div class=,row-fluid
build-image“><img class=,50001-asset img-

https://schnipsl.qgelm.de/ Printed on 2025/08/02 20:33

https://github.com/adafruit/Adafruit_CircuitPython_AVRprog/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_AVRprog/archive/master.zip
https://learn.adafruit.com/assets/50007
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium260/hacks_files.png?1515722077
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium260/hacks_files.png?1515722077
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium640/hacks_files.png?1515722077
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium800/hacks_files.png?1515722077
https://cdn-learn.adafruit.com/assets/assets/000/050/007/large1024/hacks_files.png?1515722077
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium800/hacks_files.png?1515722077
https://cdn-learn.adafruit.com/assets/assets/000/050/007/medium800/hacks_files.png?1515722077
https://learn.adafruit.com/assets/50001

2025/08/02 20:33 7/9 Overview | Stand-alone programming AVRs using CircuitPython

responsive”
srcset=,,https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium260/hacks_flash_start.png?
1515720290 260w,
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium640/hacks_flash_start.png?1515720
290 640w,
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium800/hacks flash start.png?1515720
290 800w,

https://cdn-learn.adafruit.com/assets/assets/000/050/001/large1024/hacks flash_start.png?15157202
90 1024w" sizes=,(max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px)
47vw, 750px*
src=,https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium800/hacks_flash start.png?15
15720290" alt=,hacks_flash_start.png“/></div> <div class=,row-fluid build-text"
readability=,33"“> <p>It will skip most of the flash 'pages' because they're empty. At the end you'll
get to the pages that are flashed and verified:</p> </div> <div class=,row-fluid build-image“><img class=,50002-asset img-responsive“

srcset=, https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium260/hacks_flashdone_verifi
ed.png?1515720332 260w,
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium640/hacks_flashdone_verified.png?1
515720332 640w,
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium800/hacks_flashdone_verified.png?1
515720332 800w,
https://cdn-learn.adafruit.com/assets/assets/000/050/002/largel024/hacks_flashdone_verified.png?15
15720332 1024w" sizes=, (max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width:
1365px) 47vw, 750px*“

src=, https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium800/hacks_flashdone_verified.
png?1515720332“ alt=,hacks_flashdone_verified.png“/></div> <div class=, row-fluid build-
text” readability=,33"“> <p>It's very very rare for something to go wrong during verification. But if it
does you'll see something like this. Just start over by hitting ~C and ~D in the REPL to begin
again.</p> </div> <div class=,row-fluid build-image“><img class=,50003-asset img-responsive“
srcset=,,https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium260/hacks_verifyfail.png?1
515720410 260w,
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium640/hacks_verifyfail.png?15157204
10 640w,
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium800/hacks_verifyfail.png?15157204
10 800w,
https://cdn-learn.adafruit.com/assets/assets/000/050/003/large1024/hacks_verifyfail.png?1515720410
1024w* sizes=, (max-width: 768px) 100vw, (max-width: 1024px) 65vw, (max-width: 1365px) 47vw,
750px*
src=,https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium800/hacks_verifyfail.png?1515
720410" alt=,hacks_verifyfail.png“/></div> <div class=,row-fluid build-text"
readability=,32"“> <p>That's it! You've programmed the chip. For more details, keep reading.</p>
</div> </div><div class=,page-content all-page-view-content” readability=,97“> <div class=,row-
fluid build-text” readability=,55"> <p>Before you can really do anything you need to tell AVRprog
library what the chip is. We'll use a python dict for that. Define name (that's for
your information and printing errors), sig - a list of the three-byte signature,
flash_size - the size of the flash memory in bytes,
page_size - the size of each flash memory page in bytes, and
fuse_mask - a list of the four fuses in a list

[low, high, ext, lock]

Qgelm - https://schnipsl.qgelm.de/

https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium260/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium260/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium640/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium640/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium800/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium800/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/large1024/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/large1024/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium800/hacks_flash_start.png?1515720290
https://cdn-learn.adafruit.com/assets/assets/000/050/001/medium800/hacks_flash_start.png?1515720290
https://learn.adafruit.com/assets/50002
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium260/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium260/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium640/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium640/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium800/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium800/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/large1024/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/large1024/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium800/hacks_flashdone_verified.png?1515720332
https://cdn-learn.adafruit.com/assets/assets/000/050/002/medium800/hacks_flashdone_verified.png?1515720332
https://learn.adafruit.com/assets/50003
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium260/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium260/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium640/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium640/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium800/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium800/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/large1024/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium800/hacks_verifyfail.png?1515720410
https://cdn-learn.adafruit.com/assets/assets/000/050/003/medium800/hacks_verifyfail.png?1515720410

Last
update:
2021/12/06
15:24

wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython

</p> <p>Fuse mask is the oddest one, but basically it defines which bits are actually used in each
fuse. For example, the ext fuse is often only the bottom three bits, so its 0x07. If
you're not sure, you can set all four to 0xFF and then when you burn fuses, set all
the high bits to 1.</p> <p>Here are some chip examples:</p> </div> <div class=,build-code code-
element” readability=,19“> <pre class=,code-text-only c4“> attiny85 = {'name": ,ATtiny85"}
attiny85['sig'] = [Ox1E, 0x93, 0x0B] attiny85['flash_size'] = 8192 attiny85['page_size'] = 64
attiny85['fuse_mask'] = (OxFF, OxFF, 0x07, 0x3F) </pre> <pre class=,prettyprint linenums*“>
attiny85 = {'name': ,ATtiny85"} attiny85['sig'] = [0x1E, 0x93, 0x0B] attiny85['flash_size'] = 8192
attiny85['page_size'] = 64 attiny85['fuse_mask'] = (OxFF, OxFF, 0x07, Ox3F) </pre></div> <div
class=,build-code code-element” readability=,19“> <pre class=, code-text-only c4“> atmega328p =
{'name': ,ATmega328P"} atmega328p['sig'] = [0x1E, 0x95, OxOF] atmega328p[‘flash_size'] = 32768
atmega328p['page_size']l = 128 atmega328p[‘fuse_mask'] = (OxFF, OxFF, 0x07, 0x3F) </pre> <pre
class=,prettyprint linenums“> atmega328p = {'name': ,ATmega328P“} atmega328p['sig'] = [Ox1E,
0x95, OxOF] atmega328p['flash_size'] = 32768 atmega328p['page_size'] = 128
atmega328p['fuse_mask'] = (OxFF, OxFF, 0x07, 0x3F) </pre></div> <div class=,build-code code-
element” readability=, 19> <pre class=,code-text-only c4“> atmega2560 = {'name":
~ATmega2560“} atmega2560['sig'] = [0x1E, 0x98, 0x01] atmega2560['flash_size']l = 262144
atmega2560['page_size']l = 256 atmega2560[‘fuse_mask'] = (OxFF, OxFF, 0x07, 0x3F) </pre> <pre
class=,prettyprint linenums“> atmega2560 = {'name': ,ATmega2560“} atmega2560['sig'] = [Ox1E,
0x98, 0x01] atmega2560['flash_size'] = 262144 atmega2560['page_size'] = 256
atmega2560['fuse_mask'] = (OxFF, OxFF, 0x07, 0x3F) </pre></div> <div class=,row-fluid build-text"
readability=,37“> <p>

avrprog.verify sig(chip dict, verbose=True)
</p> <p>We suggest calling this first, you can call it whenever you like, and it will return True/False.
chip dict

is that dictionary you made above</p> </div> <div class=,row-fluid build-text” readability=,39">
<p>This one is easy, just call

avrprog.erase chip()

- the chip erase command is the same for all chips. It may take a second on bigger chips.
You must do this before programming new firmware!</p> <p>Also, if your chip
has the lock-firmware-fuse set, you may have to erase the flash before you can change the lock
fuse.</p> </div> <div class=,row-fluid build-text” readability=,53“> <p>You can read, write and
verify fuses.</p> <p>Read fuses with</p> <p>

avrprog.read fuses(chip dict)

</p> <p>Which will return a list of the four fuses [low, high, ext, lock]</p> <p>Write
fuses with</p> <p>

avrprog.write fuses(chip dict, low=0x1l, high=0xhh, ext=0xee, lock=0xkk)

</p> <p>Only arguments that are passed in will be written, so you can choose to write one fuse, or
all 4.</p> <p>Verify fuses with</p> <p>

https://schnipsl.qgelm.de/ Printed on 2025/08/02 20:33

2025/08/02 20:33 9/9 Overview | Stand-alone programming AVRs using CircuitPython

avrprog.verify fuses(chip dict, low=0x1ll, high=0xhh, ext=0xee, lock=0xkk)

</p> <p>0nly arguments that are passed in will be verified, so you can choose to verify one fuse, or
all 4.</p> </div> <div class=,row-fluid build-text” readability=,60“> <p>OK this is the good part,
here's how you can write and verify flash memory. Reading memory to disk is not supported yet!</p>
<p>

avrprog.program file(chip dict, "filename.hex", verbose=True, verify=True)

</p> <p>This function does all the work really, give it the chip information dictionary, and the name
of a file (full path is OK). If

verify

is True, it will verify each page manually after writing. This is way faster than writing the whole file
and then verifying the whole file so we recommend it.</p> <p>If you really want, you can also verify
against a file with:</p> <p>

verify file(chip dict, "filename.hex", verbose=True)

</p> <p>But it will check every single byte of the flash chip, so for example, if its
a sparse hex file, like most bootloaders are where only a small portion of flash is data and the rest is
empty, the empty parts are still checked. So it's very slow!</p> </div> <div class=, row-fluid build-
text” readability=,31"“> <p>Not supported at this time!</p> </div> </div> </htm|>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:

Last update: 2021/12/06 15:24

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:overview-_-stand-alone-programming-avrs-using-circuitpython

	[Overview | Stand-alone programming AVRs using CircuitPython]
	Overview | Stand-alone programming AVRs using CircuitPython

