
2025/08/09 05:34 1/5 Practical IoT Cryptography on the Espressif ESP8266

Qgelm - https://schnipsl.qgelm.de/

Practical IoT Cryptography on the Espressif ESP8266

Originalartikel

Backup

<html> <p>The Espressif ESP8266 chipset makes three-dollar ‘Internet of Things’
development boards an economic reality. According to the popular automatic firmware-building site nodeMCU-
builds, in the last 60 days there have been 13,341 custom firmware builds for that platform. Of
those, only 19% have SSL support, and 10% include the cryptography module.</p>
<p>We’re often critical of the lack of security in
the IoT sector, and frequently cover botnets and other
attacks, but will we hold our projects to the same standards we demand? Will we stop at
identifying the problem, or can we be part of the solution?</p> <p>This article will focus on applying
AES encryption and hash authorization functions to the MQTT protocol using the popular ESP8266 chip
running NodeMCU firmware. Our purpose is not to provide a copy/paste panacea, but to go through
the process step by step, identifying challenges and solutions along the way. The result is a system
that’s end-to-end encrypted and authenticated, preventing eavesdropping along the way, and
spoofing of valid data, without relying on SSL.</p> <p>We’re aware that there are also more
powerful platforms that can easily support SSL (e.g. Raspberry Pi, Orange Pi, FriendlyARM), but
let’s start with the cheapest hardware most of us have lying around, and a protocol suitable
for many of our projects. AES is something you could implement on an AVR if you needed to.</p>
<p/> <h2>Theory</h2> <p>MQTT is a lightweight messaging protocol that runs on top of TCP/IP
and is frequently used for IoT projects. Client devices subscribe or publish to topics (e.g.
sensors/temperature/kitchen), and these messages are relayed by an MQTT broker. More information
on MQTT is available on their webpage or in our own getting-started
series.</p> <p>The MQTT protocol doesn’t have any built-in security features beyond
username/password authentication, so it’s common to encrypt and authenticate across a
network with SSL. However, SSL can be rather demanding for the ESP8266 and when enabled,
you’re left with much less memory for your application. As a lightweight alternative, you can
encrypt only the data payload being sent, and use a session ID and hash function for
authentication.</p> <p>A straightforward way to do this is using Lua and the NodeMCU Crypto
module, which includes support for the AES algorithm in <a
href=„https://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&section=6#C
ipher_Block_Chaining_.28CBC.29“ target=„_blank“>CBC mode as well as the HMAC hash
function. Using AES encryption correctly requires three things to produce ciphertext: a message, a
key, and an initialization vector (IV). Messages and keys are straightforward concepts, but the
initialization vector is worth some discussion.</p> <p>When you encode a message in AES with a
static key, it will always produce the same output. For example, the message
“usernamepassword” encrypted with key “1234567890ABCDEF”
might produce a result like “E40D86C04D723AFF”. If you run the encryption again
with the same key and message, you will get the same result. This opens you to several common
types of attack, especially pattern analysis and replay attacks.</p> <p>In a pattern analysis attack,
you use the knowledge that a given piece of data will always produce the same ciphertext to guess

http://hackaday.com/2017/06/20/practical-iot-cryptography-on-the-espressif-esp8266/
https://www.qgelm.de/wb2html/wb118.html
http://nodemcu-build.com/stats.php
http://hackaday.com/2016/06/13/iot-security-is-an-empty-buzzword/
http://hackaday.com/2017/05/17/yet-another-iot-botnet/
http://hackaday.com/2017/04/08/brickerbot-takes-down-your-iot-devices-permanently/
http://mqtt.org/
http://hackaday.com/2016/05/09/minimal-mqtt-building-a-broker/
http://nodemcu.readthedocs.io/en/master/en/modules/crypto/
https://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation§ion=6#Cipher_Block_Chaining_.28CBC.29
https://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation§ion=6#Cipher_Block_Chaining_.28CBC.29

Last
update:
2021/12/06
15:24

wallabag:practical-iot-cryptography-on-the-espressif-esp8266 https://schnipsl.qgelm.de/doku.php?id=wallabag:practical-iot-cryptography-on-the-espressif-esp8266

https://schnipsl.qgelm.de/ Printed on 2025/08/09 05:34

what the purpose or content of different messages are without actually knowing the secret key. For
example, if the message “E40D86C04D723AFF” is sent prior to all other
communications, one might quickly guess it is a login. In short, if the login system is simplistic,
sending that packet (a replay attack) might be enough to identify yourself as an authorized user, and
chaos ensues.</p> <p>IVs make pattern analysis more difficult. An IV is a piece of data sent along
with the key that modifies the end ciphertext result. As the name suggests, it initializes the state of
the encryption algorithm before the data enters. The IV needs to be different for each message sent
so that repeated data encrypts into different ciphertext, and some ciphers (like AES-CBC) require it to
be unpredictable – a practical way to accomplish this is just to randomize it each time. IVs do
not have to be kept secret, but it’s typical to obfuscate them in some way.</p> <p>While
this protects against pattern analysis, it doesn’t help with replay attacks. For example,
retransmitting a given set of encrypted data will still duplicate the result. To prevent that, we need to
authenticate the sender. We will use a public, pseudorandomly generated session ID for each
message. This session ID can be generated by the receiving device by posting to an MQTT topic.</p>
<p>Preventing these types of attacks is important in a couple of common use cases. Internet
controlled stoves exist, and questionable utility aside, <a
href=„http://hackaday.com/2017/04/20/half-baked-iot-stove-could-be-used-as-a-remote-controlled-ars
on-device/“>it would be nice if they didn’t use insecure commands. Secondly, if
I’m datalogging from a hundred sensors, I don’t want anyone filling my database with
garbage.</p> <h2>Practical Encryption</h2> <p>Implementing the above on the NodeMCU
requires some effort. You will need firmware
compiled to include the ‘crypto’ module in addition to any others you require for
your application. SSL support is not required.</p> <p>First, let’s assume you’re
connected to an MQTT broker with something like the following. You can implement this as a separate
function from the cryptography to keep things clean. The client subscribes to a

sessionID

channel, which publishes suitably long, pseudorandom session IDs. You could encrypt them, but
it’s not necessary.</p> <pre class=„brush: plain; title: ; notranslate“ title=„“> m =
mqtt.Client(„clientid“, 120)  m:connect(„myserver.com“, 1883, 0,
function(client) print(„connected“) client:subscribe(„mytopic/sessionID“, 0,
function(client) print(„subscribe success“) end) end, function(client, reason)
print(„failed reason: “ .. reason) end)  m:on(„message“, function(client,
topic, sessionID) end) </pre> <p>Moving on, the node ID is a convenient way to help identify
data sources. You can use any string you wish though:

 nodeid = node.chipid()

.</p> <p>Then, we set up a static initialization vector and a key. This is only used to obfuscate the
randomized initialization vector sent with each message, NOT used for any data. We also choose a
separate key for the data. These keys are 16-bit hex, just replace them with yours.</p> <p>Finally
we’ll need a passphrase for a hash function we’ll be using later. A string of
reasonable length is fine.</p> <pre class=„brush: plain; title: ; notranslate“ title=„“> staticiv
= „abcdef2345678901“ ivkey = „2345678901abcdef“ datakey =
„0123456789abcdef“ passphrase = „mypassphrase“ </pre> <p>We’ll also
assume you have some source of data. For this example it will be a value read from the ADC.

 data = adc.read(0)

http://hackaday.com/2017/04/20/half-baked-iot-stove-could-be-used-as-a-remote-controlled-arson-device/
http://hackaday.com/2017/04/20/half-baked-iot-stove-could-be-used-as-a-remote-controlled-arson-device/
http://nodemcu-build.com/

2025/08/09 05:34 3/5 Practical IoT Cryptography on the Espressif ESP8266

Qgelm - https://schnipsl.qgelm.de/

</p> <p>Now, we generate a pseudorandom initialization vector. A 16-digit hex number is too large
for the pseudorandom number function, so we generate it in two halves (16^8 minus 1) and
concatenate them.</p> <pre class=„brush: plain; title: ; notranslate“ title=„“> half1 =
node.random(4294967295) half2 = node.random(4294967295) I = string.format(„%8x“,
half1) V = string.format(„%8x“, half2) iv = I .. V </pre> <p>We can now run the
actual encryption. Here we are encrypting the current initialization vector, the node ID, and one piece
of sensor data.</p> <pre class=„brush: plain; title: ; notranslate“ title=„“> encrypted_iv =
crypto.encrypt(„AES-CBC“, ivkey, iv, staticiv) encrypted_nodeid = crypto.encrypt(„AES-CBC“,
datakey, nodeid,iv) encrypted_data = crypto.encrypt(„AES-CBC“, datakey, data,iv)
</pre> <p>Now we apply the hash function for authentication. First we combine the

nodeid

,

iv

,

data

, and session ID into a single message, then compute a HMAC SHA1 hash using the passphrase we
defined earlier. We convert it to hex to make it a bit more human-readable for any debugging.</p>
<pre class=„brush: plain; title: ; notranslate“ title=„“> fullmessage = nodeid .. iv .. data ..
sessionID hmac = crypto.toHex(crypto.hmac(„sha1“, fullmessage, passphrase)) </pre>
<p>Now that both encryption and authentication checks are in place, we can place all this
information in some structure and send it. Here, we’ll use comma separated values as
it’s convenient:</p> <pre class=„brush: plain; title: ; notranslate“ title=„“> payload =
table.concat({encrypted_iv, eid, data1, hmac}, „,“) m:publish(„yourMQTTtopic“, payload, 2, 1,
function(client) p = „Sent“ print(p) end) </pre> <p>When we run the above code on an actual
NodeMCU, we would get output something like this:</p>
<pre>1d54dd1af0f75a91a00d4dcd8f4ad28d, d1a0b14d187c5adfc948dfd77c2b2ee5,
564633a4a053153bcbd6ed25370346d5,
c66697df7e7d467112757c841bfb6bce051d6289 </pre> <p>All together, the encryption
program is as follows (MQTT sections excluded for clarity):</p> <pre class=„brush: plain; title: ;
notranslate“ title=„“> nodeid = node.chipid() staticiv = „abcdef2345678901“
ivkey = „2345678901abcdef“ datakey = „0123456789abcdef“ passphrase =
„mypassphrase“  data = adc.read(0) half1 = node.random(4294967295)
half2 = node.random(4294967295) I = string.format(„%8x“, half1) V =
string.format(„%8x“, half2) iv = I .. V  encrypted_iv = crypto.encrypt(„AES-CBC“,
ivkey, iv, staticiv) encrypted_nodeid = crypto.encrypt(„AES-CBC“, datakey, nodeid,iv)
encrypted_data = crypto.encrypt(„AES-CBC“, datakey, data,iv) fullmessage = nodeid .. iv ..
data .. sessionID hmac = crypto.toHex(crypto.hmac(„sha1“,fullmessage,passphrase))
payload = table.concat({encrypted_iv, encrypted_nodeid, encrypted_data, hmac}, „,“) </pre>
<h2>Decryption</h2> <p>Now, your MQTT broker doesn’t know or care that the data is
encrypted, it just passes it on. So, your other MQTT clients subscribed to the topic will need to know
how to decrypt the data. On NodeMCU this is rather easy. Just split the received data into strings via the
commas, and do something like the below. Note this end will have generated the session ID so
already knows it.</p> <pre class=„brush: plain; title: ; notranslate“ title=„“> staticiv =
„abcdef2345678901“ ivkey = „2345678901abcdef“ datakey =

http://lua-users.org/wiki/SplitJoin

Last
update:
2021/12/06
15:24

wallabag:practical-iot-cryptography-on-the-espressif-esp8266 https://schnipsl.qgelm.de/doku.php?id=wallabag:practical-iot-cryptography-on-the-espressif-esp8266

https://schnipsl.qgelm.de/ Printed on 2025/08/09 05:34

„0123456789abcdef“ passphrase = „mypassphrase“  iv = crypto.decrypt(„AES-
CBC“, ivkey, encrypted_iv, staticiv) nodeid = crypto.decrypt(„AES-CBC“, datakey,
encrypted_nodeid,iv) data = crypto.decrypt(„AES-CBC“,datakey, encrypted_data,iv)
fullmessage = nodeid .. iv .. data .. sessionID hmac =
crypto.toHex(crypto.hmac(„sha1“,fullmessage,passphrase)) </pre> <p>Then compare the
received and computed HMAC, and regardless of the result, invalidate that session ID by generating a
new one.</p> <h2>Once More, In Python</h2> <p>For a little variety, consider how we would
handle decryption in Python, if we had an MQTT client on the same virtual machine as the broker that
was analysing the data or storing it in a database. Lets assume you’ve received the data as a
string “payload”, from something like the excellent Paho MQTT Client for
Python.</p> <p>In this case it’s convenient to hex encode the encrypted data on the
NodeMCU before transmitting. So on the NodeMCU we convert all encrypted data to hex, for example:

 encrypted_iv = crypto.toHex(crypto.encrypt("AES-CBC", ivkey, iv, staticiv))

</p> <p>Publishing a randomized sessionID is not discussed below, but is easy enough using
os.urandom() and the Paho
MQTT Client. The decryption is handled as follows:</p> <pre class=„brush: plain; title: ;
notranslate“ title=„“> from Crypto.Cipher import AES import binascii from
Crypto.Hash import SHA, HMAC  # define all keys ivkey =
'2345678901abcdef' datakey = '0123456789abcdef' staticiv =
'abcdef2345678901' passphrase = 'mypassphrase'  # Convert the received string
to a list data = payload.split(„,“)  # extract list items encrypted_iv =
binascii.unhexlify(data[0]) encrypted_nodeid = binascii.unhexlify(data[1])
encrypted_data = binascii.unhexlify(data[2]) received_hash = binascii.unhexlify(data[3])
 # decrypt the initialization vector iv_decryption_suite = AES.new(ivkey,AES.MODE_CBC,
staticiv) iv = iv_decryption_suite.decrypt(encrypted_iv)  # decrypt the data using
the initialization vector id_decryption_suite = AES.new(datakey,AES.MODE_CBC, iv)
nodeid = id_decryption_suite.decrypt(encrypted_nodeid) data_decryption_suite =
AES.new(datakey,AES.MODE_CBC, iv) sensordata =
data_decryption_suite.decrypt(encrypted_data)  # compute hash function to compare to
received_hash fullmessage = s.join([nodeid,iv,sensordata,sessionID]) hmac =
HMAC.new(passphrase,fullmessage,SHA) computed_hash = hmac.hexdigest()  #
see docs.python.org/2/library/hmac.html for how to compare hashes securely </pre> <h2>The
End, The Beginning</h2> <p>Now we have a system that sends encrypted, authenticated messages
through an MQTT server to either another ESP8266 client or a larger system running Python. There
are still important loose ends for you to tie up if you implement this yourself. The keys are all stored
in the ESP8266s’ flash memory, so you will want to control access to these devices to prevent
reverse engineering. The keys are also stored in the code on the computer receiving the data, here
running Python. Further, you probably want each client to have a different key and passphrase.
That’s a lot of secret material to keep safe and potentially update when necessary. Solving
the key distribution problem is left as an exercise for the motivated reader.</p> <p>And on a closing
note, one of the dreadful things about writing an article involving cryptography is the possibility of
being wrong on the Internet. This is a fairly straightforward application of the tested-
and-true AES-CBC mode with HMAC, so it should be pretty solid. Nonetheless, if you find any
interesting shortcomings in the above, please let us know in the comments.</p> </html>

http://pypi.python.org/pypi/paho-mqtt/1.1
http://pypi.python.org/pypi/paho-mqtt/1.1

2025/08/09 05:34 5/5 Practical IoT Cryptography on the Espressif ESP8266

Qgelm - https://schnipsl.qgelm.de/

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:practical-iot-cryptography-on-the-espressif-esp8266

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:practical-iot-cryptography-on-the-espressif-esp8266

	[Practical IoT Cryptography on the Espressif ESP8266]
	Practical IoT Cryptography on the Espressif ESP8266

