
2025/08/02 11:34 1/2 Ragel State Machine Compiler

Qgelm - https://schnipsl.qgelm.de/

Ragel State Machine Compiler

Originalartikel

Backup

<html> <p>Ragel compiles executable finite state machines from regular languages. Ragel targets
C, C++ and ASM. Ragel state machines can not only recognize byte sequences as regular expression
machines do, but can also execute code at arbitrary points in the recognition of a
regular language. Code embedding is done using inline operators that do not disrupt the regular
language syntax.</p> <p>The core language consists of standard regular expression operators (such
as union, concatenation and Kleene star) and action
embedding operators. The user’s regular expressions are compiled to a deterministic state
machine and the embedded actions are associated with the transitions of the machine. Understanding
the formal relationship between regular expressions and deterministic finite automata is key to using
Ragel effectively.</p> <p>Ragel also provides operators that let you control any non-determinism
that you create, construct scanners, and build state machines using a statechart model. It is also
possible to influence the execution of a state machine from inside an embedded action by jumping or
calling to other parts of the machine, or reprocessing input.</p> <p>Ragel provides a very flexible
interface to the host language that attempts to place minimal restrictions on how the generated code
is integrated into the application. The generated code has no dependencies.</p> <p>Ragel code
looks like:</p> <pre>action dgt { printf(„DGT: %c\n“, fc); } action dec { printf(„DEC: .\n“); } action
exp { printf(„EXP: %c\n“, fc); } action exp_sign { printf(„SGN: %c\n“, fc); } action number {
/*NUMBER*/ } number = (

 [0-9]+ $dgt ('.' @dec [0-9]+ $dgt)?
 ([eE] ([+\-] $exp_sign)? [0-9]+ $exp)?

) %number; main := (number '\n')*; </pre> <p>.. and it compiles to:</p> <pre>st0:

 if (++p == pe)
 goto out0;
 if (48 <= (*p) && (*p) <= 57)
 goto tr0;
 goto st_err;

tr0:

 { printf("DGT: %c\n", (*p)); }

st1:

 if (++p == pe)
 goto out1;
 switch ((*p)) {
 case 10: goto tr5;
 case 46: goto tr7;
 case 69: goto st4;
 case 101: goto st4;
 }

https://www.colm.net/open-source/ragel/
https://www.qgelm.de/wb2html/wb109.html

Last update:
2021/12/06 15:24 wallabag:ragel-state-machine-compiler https://schnipsl.qgelm.de/doku.php?id=wallabag:ragel-state-machine-compiler

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:34

 if (48 <= (*p) && (*p) <= 57)
 goto tr0;
 goto st_err;

</pre> <p>… and it visualizes as:</p> <p></p> <h2>What kind of
task is Ragel good for?</h2> Writing robust protocol implementations. Parsing
data formats. Lexical analysis of programming languages. Validating user
input. <h2>Features</h2> Construct finite state machines using:
regular language operators state chart operators a scanner operator
some mix of the above Embed actions into machines in arbitrary
places. Control non-determinism using guarded operators. Minimize state
machines using Hopcroft’s algorithm. Visualize output with Graphviz. Use byte, double byte or word-sized
alphabets. Generate C, C++ or ASM (GNU, x86_64, System V ABI) code with no
dependencies. Choose from table or control flow driven state machines.
<h2>Download</h2> <h3>Stable</h3> <p> March 24, 2017
ragel-6.10.tar.gz (sig) (key)
ragel-guide-6.10.pdf</p>
<h3>Development</h3> <p> May 11, 2017
ragel-7.0.0.10.tar.gz
</p><h2>Discussion and GIT Repos</h2> <p>The ragel mailing list is back on the
colm.net domain.</p> <p>

git clone git://git.colm.net/ragel.git

</p> <h2>License</h2> <p>Beginning with the next development release (> 7.0.0.9) Ragel is
licensed under an MIT style license. Ragel 6 remains under GPL v2. Please see the file COPYING in the
source.</p> <p>Note: Part of the Ragel output is copied from Ragel source,
covered by the MIT (or GPL v2) license. As an exception, you may use the parts of Ragel output
copied from Ragel source without restriction. The remainder of Ragel output is derived from the input
and inherits the copyright and license of the input file. Use of Ragel makes absolutely no requirement
about the license of generated code.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:ragel-state-machine-compiler

Last update: 2021/12/06 15:24

https://www.colm.net/images/number_lg.png
https://www.colm.net/images/number_lg.png
http://www.graphviz.org/
https://www.colm.net/files/ragel/ragel-6.10.tar.gz
https://www.colm.net/files/ragel/ragel-6.10.tar.gz.asc
https://www.colm.net/files/thurston.asc
https://www.colm.net/files/ragel/ragel-guide-6.10.pdf
https://www.colm.net/files/ragel/ragel-7.0.0.10.tar.gz
https://www.colm.net/cgi-bin/mailman/listinfo/ragel
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:ragel-state-machine-compiler

	[Ragel State Machine Compiler]
	Ragel State Machine Compiler

