
2026/01/21 17:27 1/7 Securing Your Server’s SSH Configuration

Qgelm - https://schnipsl.qgelm.de/

Securing Your Server’s SSH Configuration

Originalartikel

Backup

<html> <p>Are your SSH log files flooding with failing login attempts? I’ve seen many
questions on websites such as Stackoverflow and Stackexchange from worried people that someone
is actively targeting their servers with brute-force password logins attempts. Let me get one thing
straight first: you are not special! It’s part of internet life: many botnets
constantly attempt to login to servers. These can be random IP addresses or known ranges such as
Amazon AWS EC2 instances or DigitalOcean droplets. There’s nothing much you can do about
this except for making sure that your server is securely set up.</p>  <p>One of the key
security measures you have to take is properly setting up your SSH configuration. If password login is
enabled and you are using an insecure password, a brute-force method might give someone access to
your server. In this blog post, I’ll discuss some methods for properly setting up SSH on your
server.</p>  <h2>Securing Your Server</h2>  <p>There are different
ways to tighten up the security on your server. By far, the safest approach is to disable password
logins altogether, though there are situations where this isn’t practical. In total, I’ll
discuss five different methods for hardening your server:</p>  Disable
password logins

Block too many login attempts
White-list specific IP addresses
Change your SSH port
Port knocking

<h2>Disable Password Logins</h2>  <p>By far, the most secure method of
protecting your servers is by disallowing password logins altogether. Passwords are many times less
secure than logging in with a public token. The computing power required to brute-force an SSH key is
not within reach for the coming years. A password though, and especially a weak one, can definitely
potentially be cracked using brute force.</p>  <p>Disable password logins by editing
the /etc/ssh/sshd_config file with your favorite editor. Find the line that contains the

PasswordAuthentication

property and disable it with:</p>  <pre lang=„text“>PasswordAuthentication
no</pre>  <p>Before restarting the ssh daemon to take the changes into effect, be sure
you have created and configured an SSH key to use for login. Without an SSH key, you will not be able
to login to your server anymore after disabling password logins. If you don’t know how to
create and configure an SSH key, check out this DigitalOcean
blogpost that explains exactly how to do so.</p>  <h2>Block To Many Login
Attempts</h2>  <p>It might very well be that disabling password logins is simply not
suitable for your use case. It then becomes especially important to block brute force attacks. There
are multiple ways to do this, but let me focus on two specific methods here.</p> 
<h3>Recent</h3>  <p>First,

IPTables

https://www.codeproject.com/Articles/1152837/Securing-your-server-s-SSH-configuration
https://www.qgelm.de/wb2html/wb55.html
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2

Last
update:
2021/12/06
15:24

wallabag:securing-your-servers-ssh-configuration https://schnipsl.qgelm.de/doku.php?id=wallabag:securing-your-servers-ssh-configuration

https://schnipsl.qgelm.de/ Printed on 2026/01/21 17:27

has a built in module called “recent” for blocking too many connections attempts. We
can specify both an interval and the number of attempts within that specified interval. An example
configuration is as follows:</p>  <pre lang=„text“>iptables -N SSHBLOCK iptables
-A INPUT -p tcp -m tcp –dport 22 -m state –state NEW -j SSHBLOCK   iptables -A
SSHBLOCK -m recent –name blocks –set –rsource  iptables -A SSHBLOCK -m recent –name
blocks –update –seconds 60 

-hitcount 5 –rsource -j DROP</pre>1.

 <p>I am going to assume at least some basic knowledge about

iptables

here. If you are not familiar with the syntax, be sure to find a tutorial somewhere that explains the
basic concepts of configuring

iptables

. Always be very careful when working with firewalls; it’s possible to lock
yourself out of your system if you make a mistake.</p>  <p>We begin with creating a
new chain in the first rule to which we forward all the SSH connections in the second rule. Though not
required per sé, it makes managing the rules related to the rate limiting a bit
easier.</p>  <p>We keep track of the attempted connections in a list called “

blocks

”. The third rule adds the connecting IP address to this list. If the IP address was already in
there, it will be appended. The final rule checks if the IP address is already within the list and if it has
tried to connect 5 times within 60 seconds. If so, the connection is dropped and the IP address will
have to wait 60 seconds for another attempt to make a connection. Anything not picked up by these
rules is forwarded and the default chain policy decides what to do with it.</p>  <p>You
can keep track of the connections being blocked by looking at the
/proc/self/net/xt_recent/blocks file. The exact location of the file might differ with your
distribution and kernel version. The “blocks” filename is the same as the
name of the list we defined in the

iptables

rules. Using the

watch

command, we can watch this file while attempting some connection attempts:</p> 
<pre lang=„text“>watch -n 1 cat /proc/self/net/xt_recent/blocks</pre>  <p>In another
shell, attempt to connect to your server a few times. As you do this, you will see your IP address being
listed in the file. Don’t be surprised if you see some other IP addresses popping up in the
meantime.</p>  <p>The total number of IP addresses and number of connections per IP
address that are stored by the recent module can be configured. The following two parameters are
especially of interest:</p> 

2026/01/21 17:27 3/7 Securing Your Server’s SSH Configuration

Qgelm - https://schnipsl.qgelm.de/

ip_list_tot

: The total number of IP addresses stored

<code>ip_pkt_list_tot</code>: The total number of connections per IP
address stored

<p>The current values for these parameters can be found in the
/sys/module/xt_recent/parameters/{ip_list_tot, ip_pkt_list_tot} files. Changing these
values requires changing the parameters for the

xt_recent

kernel module, which is out of scope for this blog post. It’s good to know though that the file
won’t grow until your mount is completely full!</p>  <h3>Fail2Ban</h3>
 <p>A second method for blocking too many SSH connection attempts is by using Fail2Ban. Fail2Ban can do much more
than blocking SSH login attempts. It also supports blocking connections to software such as Apache,
Nginx, HaProxy and MySQL. For now, let’s setup a simple configuration for blocking our SSH
login attempts.</p>  <p>The GitHub page I linked to includes the installation
instructions, however be sure to first check if a package exists for your distribution. Once installed,
create the file /etc/fail2ban/jail.local with the following contents:</p>  <pre
lang=„text“>[DEFAULT] # ban for 60 seconds bantime = 60  # ban when 3
attempts are made within 60 seconds findtime = 60 maxretry = 3  # block
through iptables banaction = iptables-multiport  [sshd] # enable the above
settings for sshd enabled = true</pre>  <p>I’ve added comments to the
configuration to explain the different settings. Restart Fail2Ban to take the new settings into effect.
Try to login a few times to your server and you will find that you cannot connect anymore. After 60
seconds, you will be able to attempt a login again.</p>  <p>The advantage of IP tables
compared with Fail2Ban is that you do not need to install an additional package to your system. On
the other hand, Fail2Ban is easier to setup and it supports much more than just blocking ssh
connections. Both tools do a good job, so pick the right one for your situation!</p> 
<p>Important: I cannot stress enough that whatever brute-force-blocking
mechanism you have set up, its use can totally be undone by using an insecure password. If you
really cannot disable password logins, always be sure to use a secure password.</p> 
<h2>White-list Specific IP Addresses</h2>  <p>If you only login to your server from one
or a few specific IP addresses, it’s an option to white-list only those IP addresses in your
firewall to the SSH port. You can open up your firewall for your home address and work address, for
example. However, if you’re at a friends house and want to login to your server, you are out
of luck. There will certainly be use cases where this is a perfectly viable setup though.</p>
 <p>There are two ways for whitelisting specific IP addresses for your SSH daemon. First, we
can use

iptables

for this. If your current

iptables

rules list is empty, the following rules will suffice:</p>  <pre lang=„text“>iptables -A

https://github.com/fail2ban/fail2ban

Last
update:
2021/12/06
15:24

wallabag:securing-your-servers-ssh-configuration https://schnipsl.qgelm.de/doku.php?id=wallabag:securing-your-servers-ssh-configuration

https://schnipsl.qgelm.de/ Printed on 2026/01/21 17:27

INPUT -p tcp -m tcp –dport 22 -s [your_ip_address] -j ACCEPT iptables -A
INPUT -p tcp -m tcp –dport 22 -m state –state NEW -j DROP</pre>  <p>The first rule will
accept your IP address and allow you to make a connection. Anyone else goes through to the second
rule and is blocked if they try to connect to port 22. What happens to any other connection attempt
depends on the default chain policy. If you already have some existing rules, be sure to tailor this for
your specific ruleset.</p>  <p>Second, you can change your sshd configuration to allow
only specific IP addresses. In /etc/ssh/sshd_config, we can use the following
syntax:</p>  <pre lang=„text“>AllowUsers [username]@[ip_address]</pre>
 <p>The

[username]@[ip_address]

part can be used multiple times to allow multiple IP addresses and users.</p> 
<h2>Change your SSH Port</h2>  <p>By default, you connect to port 22 to connect
with the SSH daemon (

sshd

) on a server. Changing this port will still allow you to connect and will probably block at least 90% of
the automated scripts that try to break into your server. However, whatever software you use to
connect with your server over SSH will need to be changed to connect with the new port. If you have
any automation scripts or external software that uses SSH to connect, be sure to check beforehand if
they have support for connecting to a different port.</p>  <p>Changing your SSH port is
very easy. Open up the /etc/ssh/sshd_config file in your favorite editor and change the
following line:</p>  <pre lang=„text“>#Port 22</pre>  <p>Uncomment
the line and change the port to a new value. It’s recommended to change your port to a value
> 49152. Following the <a
href=„http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xh
tml“>IANA port assignment guidelines, this will minimize the chance of your port colliding with
an another service that also uses this port. Finally, be sure to restart your sshd deamon to take the
change into effect (

systemctl restart sshd

when using

systemd

). Connecting to a different port with SSH is easy with the

-p

parameter:</p>  <pre lang=„text“>ssh -p [port] [user]@[host]</pre> 
<p>Remember that whoever knows your SSH port can still execute any brute force attempts if no
other mechanisms are in place to battle that. A port scanner will still show your open port, so keep
that in mind.</p>  <h2>Port Knocking</h2>  <p>This is by far the most
creative way to add an additional layer of protection. By default, we close our SSH port which will
block anyone who tries to connect. Only when a specific sequence of connection attempts (the
“knocking”) on specific ports is made, the SSH port is opened temporarily so that

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

2026/01/21 17:27 5/7 Securing Your Server’s SSH Configuration

Qgelm - https://schnipsl.qgelm.de/

someone can connect. These other ports don’t need to be open; the

knockd

service will also listen on closed ports.</p>  <p>As

knockd

will open up your SSH port after a correct sequence, we need to make sure that this port is closed by
default. Closing your SSH port is always tricky as it might block you out of your server. It’s
best to first attempt this on a test server before doing it on your actual server. Given that no other

iptables

rules are set, the following rule will block any new incoming SSH connections. This
means that your current open connection will not be dropped:</p>  <pre
lang=„text“>iptables -A INPUT -p tcp -m tcp –dport 22 -m state –state NEW -j DROP</pre>
 <p>The

knockd

service is available for Debian distributions through installation with

apt-get

. For other distributions, you might need to install from source which you can find on the knockd website. On Ubuntu, install the service
with the following command:</p>  <pre lang=„text“>apt-get install
knockd</pre>  <p>Next, open up the

knockd

configuration file (/etc/knock.conf) with your favorite text editor. As you will see, there is
already an example configuration set. This configuration requires us to close the SSH port with a
different sequence of connection attempts. We can change this so that the port is automatically
closed after a defined interval, such as 20 seconds. Yes, you will have 20 seconds to login to your
server after the knocking sequence! You can use the following configuration for this:</p>
 <pre lang=„text“>[options] UseSyslog  [SSH] sequence =
8888,7777,6666 tcpflags = syn seq_timeout = 10 start_command = /sbin/iptables
-I INPUT 1 -s %IP% -p tcp –dport 22 -j ACCEPT cmd_timeout = 20 stop_command =
/sbin/iptables -D INPUT -s %IP% -p tcp –dport 22 -j ACCEPT</pre>  <p>The configuration
is pretty self explanatory. We configure three ports that consequently need to be connected to. We
also specify that this sequence needs to be performed within 10 seconds and that the port will close
again after 20 seconds. Opening and closing (or “starting” and
“stopping”) the SSH port is done through two

iptables

rules. Of course, change this line if you have changed your SSH port to another one.</p>
 <p>Before we can start

http://www.zeroflux.org/projects/knock

Last
update:
2021/12/06
15:24

wallabag:securing-your-servers-ssh-configuration https://schnipsl.qgelm.de/doku.php?id=wallabag:securing-your-servers-ssh-configuration

https://schnipsl.qgelm.de/ Printed on 2026/01/21 17:27

knockd

, we need to edit the /etc/default/knockd file. Find the line that says

START_KNOCKD=0

and change this to

START_KNOCKD=1

. Save the file and start knock with

service knockd start

.</p>  <p>“Knocking” on this server from another server can be done
with the same

knockd

package. On a different server, install the same package. We can use the following command
now:</p>  <pre lang=„text“>knock [ip_address] 8888 7777 6666</pre> 
<p>Now, connect to the server with SSH and you should be able to connect to the server. Logout,
wait a second or 20 and try to login again. The port should now be closed again.</p> 
<p>Similar to changing your SSH port, this approach requires you to change the way you login to
your server. Again, if you use any external services that login to your server, make sure they will be
able to do so with

knockd

enabled. You do not need to use the

knockd

service per sé to “knock” on a server. Connecting to the port sequence with

nmap

will yield the same result. Keep this in mind if you need to automate the “knocking”
for a different service that connects with your server.</p>  <h2>Conclusion</h2>
 <p>There are many ways to properly harden the security of your server. In this blog post, we
specifically looked at SSH. The internet is a scary place with many botnets looking to get into any
poorly configured servers. It’s a good thing then that there are many ways to protect your
server:</p>  Whenever possible: disable password logins

If that really isn’t possible: use a strong password!
Block brute force attacks by blocking too many login attempts
Consider adding some extra obscurity such as changing your SSH
port or enabling port knocking

2026/01/21 17:27 7/7 Securing Your Server’s SSH Configuration

Qgelm - https://schnipsl.qgelm.de/

<p>Both changing your SSH port and enabling port knocking can be considered a
security through obscurity approach: hiding our service instead of really securing it.
When used in combination with a solid security mechanism such as a strong password, I consider
such an approach as an additional layer of security. Practicalities aside, it will only make it harder to
get into your server.</p>  <p><img height=„1“
src=„https://sanderknape.com/?feed-stats-post-id=200“ width=„1“/></p>  <p>The post
<a href=„https://sanderknape.com/2016/11/securing-your-server-ssh-configuration/“
rel=„nofollow“>Securing your server’s SSH configuration appeared first on Sander Knape.</p>  
</html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:securing-your-servers-ssh-configuration

Last update: 2021/12/06 15:24

https://sanderknape.com/?feed-stats-post-id=200
https://sanderknape.com/2016/11/securing-your-server-ssh-configuration/
https://sanderknape.com/
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:securing-your-servers-ssh-configuration

	[Securing Your Server’s SSH Configuration]
	Securing Your Server’s SSH Configuration

