
2026/01/21 17:42 1/4 Statistics and Hacking: A Stout Little Distribution

Qgelm - https://schnipsl.qgelm.de/

Statistics and Hacking: A Stout Little Distribution

Originalartikel

Backup

<html> <p>Previously, we discussed <a
href=„https://hackaday.com/2017/12/01/statistics-and-hacking-an-introduction-to-hypothesis-
testing/“>how to apply the most basic hypothesis test: the z-test. It requires a relatively large
sample size, and might be appreciated less by hackers searching for truth on a tight budget of time
and money.</p> <p>As an alternative, we briefly mentioned the t-test. The basic procedure still
applies: form hypotheses, sample data, check your assumptions, and perform the test. This time
though, we’ll run the test with real data from IoT sensors, and programmatically rather than
by hand.</p> <p>The most important difference between the z-test and the t-test is that the t-test
uses a different probability distribution. It is called the ‘t-distribution’, and is similar in
principle to the normal distribution used by the z-test, but was developed by studying the properties
of small sample sizes. The precise shape of the distribution depends on your sample size.</p>
<figure id=„attachment_283571“ class=„wp-caption alignright c2“><img data-attachment-
id=„283571“
data-
permalink=„https://hackaday.com/2017/12/13/statistics-and-hacking-a-stout-little-distribution/t_distri
bution_3df_enhanced-svg/“
data-
orig-file=„https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-svg.png“
data-orig-size=„1024,1024“ data-comments-opened=„1“ data-image-
meta=„{"aperture":"0","credit":"","camera"
:"","caption":"","created_timestamp":"0",&q
uot;copyright":"","focal_length":"0","iso":"0
","shutter_speed":"0","title":"","orientation&
quot;:"0"}“ data-image-title=„T_distribution_3df_enhanced.svg“ data-image-
description=„“
data-
medium-file=„https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-svg.png
?w=400“
data-
large-
file=„https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-
svg.png?w=625“ class=„wp-image-283571 size-medium“
src=„https://hackadaycom.files.wordpress.com/2017/12/t_distribution_3df_enhanced-svg.jpg?w=400&
amp;h=400“ alt=„“ width=„400“ height=„400“/><figcaption class=„wp-caption-text“>The t
distribution with different sample sizes, compared to the normal distribution (Hackaday yellow).
Source: <a href=„https://en.wikipedia.org/wiki/Student%27s_t-distribution“
target=„_blank“>Wikipedia</figcaption></figure><p>In our previous example, we only dealt
with the situation where we want to compare a sample with a constant value – whether a
batch of resistors were the value they were supposed to be. In fact there are three common
situations:</p> You want to compare a sample to a fixed value: One sample t-test
You want to compare two independent samples: Two sample t-test You have two
measurements taken from each sample (e.g. treatment and control) and are interested in the
difference: Paired t-test <p>The difference mainly affects how you might set up your
experiment, although if you have two independent samples, there is some extra work involved if you

https://hackaday.com/2017/12/13/statistics-and-hacking-a-stout-little-distribution/
https://www.qgelm.de/wb2html/wb255.html
https://hackaday.com/2017/12/01/statistics-and-hacking-an-introduction-to-hypothesis-testing/
https://hackaday.com/2017/12/01/statistics-and-hacking-an-introduction-to-hypothesis-testing/
https://hackaday.com/2017/12/13/statistics-and-hacking-a-stout-little-distribution/t_distribution_3df_enhanced-svg/
https://hackaday.com/2017/12/13/statistics-and-hacking-a-stout-little-distribution/t_distribution_3df_enhanced-svg/
https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-svg.png
https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-svg.png?w=400
https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-svg.png?w=400
https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-svg.png?w=625
https://hackadaycom.files.wordpress.com/2017/11/t_distribution_3df_enhanced-svg.png?w=625
https://hackadaycom.files.wordpress.com/2017/12/t_distribution_3df_enhanced-svg.jpg?w=400&h=400
https://hackadaycom.files.wordpress.com/2017/12/t_distribution_3df_enhanced-svg.jpg?w=400&h=400
https://en.wikipedia.org/wiki/Student%27s_t-distribution

Last
update:
2021/12/06
15:24

wallabag:statistics-and-hacking_-a-stout-little-distribution https://schnipsl.qgelm.de/doku.php?id=wallabag:statistics-and-hacking_-a-stout-little-distribution

https://schnipsl.qgelm.de/ Printed on 2026/01/21 17:42

have different sample sizes or one sample varies more than the other. In those cases you’re
probably better off using a slight variation on the t-test called Welsh’s t-
test.</p> <p>In our case, we are comparing the temperature and humidity readings of two
different sensors over time, so we can pair our data as long as the sensors are read at more or less
the same time. Our null and alternate hypotheses are straightforward here: the sensors either
don’t produce significantly different results, or they do.</p> <figure
id=„attachment_283574“ class=„wp-caption aligncenter c3“><img data-attachment-id=„283574“
data-
permalink=„https://hackaday.com/2017/12/13/statistics-and-hacking-a-stout-little-distribution/sensors
-7/“ data-orig-file=„https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg“ data-orig-
size=„1200,556“ data-comments-opened=„1“ data-image-
meta=„{"aperture":"2.4","credit":"","camera&qu
ot;:"Nexus
5","caption":"","created_timestamp":"1511624465&quo
t;,"copyright":"","focal_length":"3.97","iso":
"800","shutter_speed":"0.085074","title":"",
"orientation":"1"}“ data-image-title=„sensors“ data-image-description=„“
data-medium-file=„https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=400“ data-
large-file=„https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=800&h=371“
class=„wp-image-283574 size-large“
src=„https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=800&h=371“ alt=„“
width=„800“ height=„371“
srcset=„https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=800&h=371 800w,
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=250&h=116 250w,
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=400&h=185 400w,
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=768&h=356 768w,
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg 1200w“ sizes=„(max-width: 800px)
100vw, 800px“/><figcaption class=„wp-caption-text“>The two DHT11 sensors were taped down to
my desk. They were read with a NodeMCU and the data pushed to a ThingsBoard
server.</figcaption></figure><p>Next, we can sample. The readings from both sensors were taken
at essentially the same time every 10 seconds, and sent via MQTT to a Thingsboard server. After a couple of days, the
average temperature recorded by each sensor over 10 minute periods was retrieved. The sensor
doesn’t have great resolution (1 °C), so averaging the data out like this made it less
granular. The way to do this is sort of neat in ThingsBoard.</p> <p>First you set up an access
token:</p> <pre class=„brush: bash; title: ; notranslate“ title=„“> $curl -X POST –header 'Content-
Type: application/json' –header 'Accept: application/json' -d '{„username“:„yourusername“,
„password“:„yourpassword“}' 'http://host.com:port/api/auth/login' </pre> <p>Then you request all
data for a particular variable, averaged out every 10 minutes in JSON format (timestamps will be
included):</p> <pre class=„brush: bash; title: ; notranslate“ title=„“> $curl -v -X GET
„http://host.com:port/api/plugins/telemetry/DEVICE/devicekey/values/timeseries?keys=variablename&
amp;startTs=1510917862000&endTs=1510983920000&interval=600000&limit=1000
0&agg=AVG“ \ –header „Content-Type:application/json“ \ –header „X-Authorization:Bearer (token
goes here)“ > result.txt </pre> <p>What’s cool about using an API like this is that you can
easily automate data management and testing as parts of a decision engine. If you’re using
less accurate sensors, or are just measuring something that varies a lot, using statistical significance
as the basis to make a decision instead of a single sensor value can really improve reliability. But I
digress, back to our data!</p> <p>Next, I did a little data management: the JSON was converted to a
CSV format, and the column titles removed (timestamp and temperature). That made it easier for me

http://en.wikipedia.org/wiki/Welch%27s_t-test
https://hackaday.com/2017/12/13/statistics-and-hacking-a-stout-little-distribution/sensors-7/
https://hackaday.com/2017/12/13/statistics-and-hacking-a-stout-little-distribution/sensors-7/
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=400
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=800&h=371
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=800&h=371
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=800&h=371
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=250&h=116
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=400&h=185
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg?w=768&h=356
https://hackadaycom.files.wordpress.com/2017/11/sensors.jpg
http://thingsboard.io/
http://host.com:port/api/auth/login
http://host.com:port/api/plugins/telemetry/DEVICE/devicekey/values/timeseries?keys=variablename&startTs=1510917862000&endTs=1510983920000&interval=600000&limit=10000&agg=AVG
http://host.com:port/api/plugins/telemetry/DEVICE/devicekey/values/timeseries?keys=variablename&startTs=1510917862000&endTs=1510983920000&interval=600000&limit=10000&agg=AVG
http://host.com:port/api/plugins/telemetry/DEVICE/devicekey/values/timeseries?keys=variablename&startTs=1510917862000&endTs=1510983920000&interval=600000&limit=10000&agg=AVG

2026/01/21 17:42 3/4 Statistics and Hacking: A Stout Little Distribution

Qgelm - https://schnipsl.qgelm.de/

to process in Python. The t-test assumes normally distributed data just like the z-test does, so I loaded
the data from the CSV file into a list and ran the test:</p> <pre class=„brush: python; title: ;
notranslate“ title=„“> import scipy.stats as stats import csv import math as math import numpy as
numpy #Set up lists tempsensor1=[] tempsensor2=[] #Import data from a file in the same folder with
open('temperature1.csv', 'rb') as csvfile: datareader = csv.reader(csvfile, delimiter=',', quotechar='|')
for row in datareader: tempsensor1.append(float(row[1])) with open('temperature2.csv', 'rb') as
csvfile: datareader = csv.reader(csvfile, delimiter=',', quotechar='|') for row in datareader:
tempsensor2.append(float(row[1])) #Subtract one list from the other difference=[(i -j) for i, j in
zip(tempsensor1, tempsensor2)] #Test for normality and output result normality =
stats.normaltest(difference) print „Temperature difference normality test“ print normality </pre>
<p>In this case the normality test came back p>0.05, so we’ll consider the data normal
for the purposes of our t-test. We then run our t-test on the data with the below. Note that the test is
labeled ‘ttest_1samp’ in the statistics package – this is because running a 1-
sample t-test on the difference between two datasets is equivalent to running a paired t-test on two
datasets. We had already subtracted one list of data from the other for the normality test above, and
now we’re checking if the result is significantly different from zero.</p> <pre class=„brush:
python; title: ; notranslate“ title=„“> ttest = stats.ttest_1samp(difference, 0, axis=0)
mean=numpy.mean(difference) print „Temperature difference t-test“ print ttest print mean </pre>
<p>The test returns a t-test statistic of -8.42, and a p-value of 1.53×10-13, which is much less
than our threshold of p=0.05. The average difference was -0.364 °C. What that means is that
the two sensors are producing significantly different results, and we have a ballpark figure for what
the difference should be at a temperature of around 30 °C. Extrapolating that result to very
different temperatures is not valid, since our data only covered a small range (29-32 °C).</p>
<p>I also ran the above test on humidity data, but the results aren’t interesting because
according to the <a href=„http://akizukidenshi.com/download/ds/aosong/DHT11.pdf“
target=„_blank“>datasheet (PDF warning), the relative humidity calculation depends on the
temperature, and we already know the two devices are measuring significantly different
temperatures. One interesting point was that the data was not normally distributed – so what
to do?</p> <p>A commonly used technique is just to logarithmically transform the data without
further consideration and see if that makes it normally distributed. A logarithmic transformation has
the effect of bringing outlying values towards the average:</p> <pre class=„brush: python; title: ;
notranslate“ title=„“> difference=[(math.log1p(i) - math.log1p(j)) for i, j in zip(humidity1, humidity2)]
normality = stats.normaltest(difference) print „Humidity difference (log-transformed) normality test“
print normality </pre> <p>In our case, this did in fact make the data sufficiently normally distributed
to run a test. However, it’s not a very rigorous approach for two reasons. First, it complicates
exactly what you are comparing (what is the meaningful result if I compare the logarithm of
temperature values?). Secondly, it’s easy to just throw various transformations at data to
cover up the fundamental fact that your data is simply not appropriate for the test you’re
trying to run. For more details, <a href=„http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120293/“
target=„_blank“>this paper points out some of the problems that can arise.</p> <p>A more
rigorous approach that is increasing in popularity (just my opinion on both counts), is the use of non-
parametric tests. These tests don’t assume a particular data distribution. A non-parametric
equivalent to the paired t-test is the <a href=„http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test“
target=„_blank“>Wilcoxon signed-rank test (for unpaired data use the Wilcoxon
rank-sum test). It has less statistical power than a paired t-test, and it discards any datum where
the difference between pairs is zero, so there can be significant data loss when dealing with very
granular data. You also need more samples to run it: twenty is a reasonable minimum. In any case,
our data was sufficient, and <a
href=„http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.wilcoxon.html“
target=„_blank“>running the test in Python was simple:</p> <pre class=„brush: python; title: ;

http://akizukidenshi.com/download/ds/aosong/DHT11.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120293/
http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.wilcoxon.html

Last
update:
2021/12/06
15:24

wallabag:statistics-and-hacking_-a-stout-little-distribution https://schnipsl.qgelm.de/doku.php?id=wallabag:statistics-and-hacking_-a-stout-little-distribution

https://schnipsl.qgelm.de/ Printed on 2026/01/21 17:42

notranslate“ title=„“> import scipy.stats as stats list1=[datalist_goes_here] list2=[datalist_goes_here]
difference=[(i -j) for i, j in zip(list1, list2)] result=stats.wilcoxon(difference, y=None,
zero_method='wilcox', correction=False) print result </pre> <p>When we ran it, the measured
humidity difference was significant, with an average difference of 4.19%.</p> <p>You might ask
what the practical value of all this work is. This may just have been test data, but imagine I had two of
these sensors, one outside my house and one inside. To save on air conditioning, a window fan turns
on every time the temperature outside is cooler than the temperature inside. If I assumed the two
devices were exactly the same, then my system would sometimes measure a temperature difference
when there is none. By characterizing the difference between my two sensors, I can reduce the
number of times the system makes the wrong decision, in short making my smart devices smarter
without using more expensive parts.</p> <p>As a side note, it has been overstated that it’s
easy to lie with statistics. To borrow an idea from Andrejs Dunkels, the real
issue is that it’s hard to tell the truth without them.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:statistics-and-hacking_-a-stout-little-distribution

Last update: 2021/12/06 15:24

http://en.wikiquote.org/wiki/Andrejs_Dunkels
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:statistics-and-hacking_-a-stout-little-distribution

	[Statistics and Hacking: A Stout Little Distribution]
	Statistics and Hacking: A Stout Little Distribution

