
2025/07/17 20:42 1/14 Tutorials - OpenBR

Qgelm - https://schnipsl.qgelm.de/

Tutorials - OpenBR

Originalartikel

Backup

<html> <!–<div class=„toc“ data-spy=„affix“ role=„navigation“ aria-label=„main navigation“>

 <ul class="current">
 Table of Contents

 <a href="#quick-
start">Quick Start
 <a href="#algorithms-in-
openbr">Algorithms in OpenBR
 <a href="#training-
algorithms">Training Algorithms
 <a href="#face-
recognition">Face Recognition
 <a href="#age-
estimation">Age Estimation
 <a href="#gender-
estimation">Gender Estimation
 <a href="#openbr-as-a-
library">OpenBR as a Library
 <a href="#the-evaluation-
harness">The Evaluation Harness

 </div>-->
 <p>Welcome to OpenBR! Here we have a series of
tutorials designed to get you up to speed on what OpenBR is, how it works,
and its command line interface. These tutorials aren't meant to be completed
in a specific order so feel free to hop around. If you need help, feel free
to contact us.</p>

<hr/><p>This tutorial is meant to familiarize you with the ideas, objects and motivations behind
OpenBR using some fun examples. Note that parts of this tutorial require a
webcam.</p> <p>OpenBR is a C++ library built on top of Qt, OpenCV, and Eigen. It can either be used from
the command line using the

br

application, or from interfacing with the C++ or C APIs. Using the

br

http://openbiometrics.org/docs/tutorials/
https://www.qgelm.de/wb2html/wb172.html
http://www.qt.io/
http://opencv.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://openbiometrics.org/docs/api_docs/cpp_api/
http://openbiometrics.org/docs/api_docs/c_api/

Last update: 2021/12/06 15:24 wallabag:tutorials---openbr https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

https://schnipsl.qgelm.de/ Printed on 2025/07/17 20:42

application is the easiest and fastest way to get started and this tutorial will use it for all of the
examples.</p> <p>First, make sure that OpenBR has been installed on your system using the steps
described in the installation section.</p>
<p>Open up your terminal or command prompt and enter:</p> <pre>$ br -gui -algorithm
„Show(false)“ -enroll 0.webcam </pre> <p>If everything has gone according to plan, your webcam
should be on and capturing video. Congratulations, you are using OpenBR!</p> <p>Let's talk about
what's happening in the above command.

-gui

,

-algorithm

, and

-enroll

are examples of OpenBR's flags and are used to specify instructions to

br

. OpenBR expects flags to be prepended by a

-

and arguments that follow the flags to be separated by spaces. Flags normally require a specific
number of arguments. All of the possible flags and their values are documented here. Let's step through
the individual arguments and values:</p>

-gui

is the flag that tells OpenBR to open up a GUI window. Note that when

-gui

is used, it must be the first flag passed to

br

.

-algorithm

is one of the most important flags in OpenBR. It expects one argument, referred to as the
algorithm string. This string determines the pipeline through which images and
metadata propagate. It is composed of Transforms,
which are described in detail later in this tutorial.

http://openbiometrics.org/docs/install/
http://openbiometrics.org/docs/api_docs/cl_api/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/

2025/07/17 20:42 3/14 Tutorials - OpenBR

Qgelm - https://schnipsl.qgelm.de/

-enroll

reads files from a Gallery or a Format and
enrolls them through the algorithm pipeline and serializes them to another Gallery or Format.

-enroll

takes one input argument (

0.webcam

in this example) and an optional output argument. OpenBR supports multiple formats including

.jpg

,

.png

,

.csv

, and

.xml

. The

.webcam

Format tells OpenBR
to enroll frames from the computer's webcam. <p>Let's try a slightly more complicated
example. After all, OpenBR can do way more then just open webcams! Fire up the terminal again and
enter:</p> <pre>$ br -gui -algorithm „Cvt(Gray)+Show(false)“ -enroll 0.webcam </pre> <p>Here,
we took our normal BGR (OpenCV's alternative to RGB) image and converted it to a grayscale image
simply by adding

Cvt(Gray)

to the algorithm string. Cvt, short for
convert, is an example of an OpenBR Transform
. Show is a Transform as

http://openbiometrics.org/docs/api_docs/cpp_api/gallery/gallery/
http://openbiometrics.org/docs/api_docs/cpp_api/format/format/
http://openbiometrics.org/docs/api_docs/cpp_api/gallery/gallery/
http://openbiometrics.org/docs/api_docs/cpp_api/format/format/
http://openbiometrics.org/docs/api_docs/cpp_api/format/format/
http://openbiometrics.org/docs/plugin_docs/imgproc/#cvttransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/plugin_docs/gui/#showtransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/

Last update: 2021/12/06 15:24 wallabag:tutorials---openbr https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

https://schnipsl.qgelm.de/ Printed on 2025/07/17 20:42

well. In fact, every algorithm string in OpenBR is just a series of Transforms joined
to form a pipeline; even the

+

symbol is shorthand for a Pipe, another kind of
OpenBR Transform.</p>
<p>Typically, Transforms
accept parameters. We specify

Gray

to Cvt as a
runtime parameter to tell the Transform which
color space to convert the image to. We also could have written

Cvt(HSV)

if we wanted to convert to the HSV color space or

Cvt(Luv)

if we wanted to convert to LUV. Parameters can be provided as key-value pairs or as keyless values (

Cvt(Gray)

is equivalent to

Cvt(colorSpace=Gray)

) . Note that if you are supplying values only, the parameters are expected to be supplied in the order
they are defined. Try changing the algorithm string above to include

Show(true)

to see how modifying the parameters affects the output of the command (Hint: hit a key to cycle
through the images).</p> <p>Let's make this example a little bit more exciting and relevant to
OpenBR's biometric roots. Face detection is normally the first step in a face recognition algorithm.
Let's perform face detection in OpenBR. Back in the terminal enter:</p> <pre>$ br -gui -algorithm
„Cvt(Gray)+Cascade(FrontalFace)+Draw(lineThickness=3)+Show(false)“ -enroll 0.webcam </pre>
<p>You're webcam should be open again but this time a bounding-box should have appeared around
your face! We added two new Transforms to our
string: <a

http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/plugin_docs/core/#pipetransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/plugin_docs/imgproc/#cvttransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/tutorials/#face-recognition
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/

2025/07/17 20:42 5/14 Tutorials - OpenBR

Qgelm - https://schnipsl.qgelm.de/

href=„http://openbiometrics.org/docs/plugin_docs/metadata/#cascadetransform“>Cascade and
Draw. Let's walk
through this Transform by Transform and
see how it works:</p> Cvt(Gray): Convert
the image from BGR to grayscale. Grayscale is required for Cascade to
work properly. Cascade(FrontalFa
ce): This is a wrapper on the OpenCV Cascade
Classification framework. It detects frontal faces using the

FrontalFace

model. Draw(lineThickness=3):
Take the rectangles detected by Cascade and
draw them onto the frame from the webcam.

lineThickness

determines the thickness of the drawn rectangle. Show(false): Show the
image in a GUI window.

false

indicates the images should be shown in succession without waiting for a key press.
<p>Each Transform
completes one task and the passes the output on to the next Transform. You
can pipe together as many Transforms as
you like, but note that certain Transforms have
specific expectations for their input.</p> <p>You may be wondering what objects are actually being
propagated through the algorithm pipeline. There are two objects that handle data in OpenBR:</p>
Files are typically
used to store the path to a file on disk with associated metadata (in the form of key-value pairs). In
the example above, we store the rectangles detected by Cascade as
metadata which are then used by Draw for
visualization. Templates are
containers for images and <a

http://openbiometrics.org/docs/plugin_docs/metadata/#cascadetransform
http://openbiometrics.org/docs/plugin_docs/gui/#drawtransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/plugin_docs/imgproc/#cvttransform
http://openbiometrics.org/docs/plugin_docs/metadata/#cascadetransform
http://openbiometrics.org/docs/plugin_docs/metadata/#cascadetransform
http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
http://openbiometrics.org/docs/plugin_docs/gui/#drawtransform
http://openbiometrics.org/docs/plugin_docs/metadata/#cascadetransform
http://openbiometrics.org/docs/plugin_docs/gui/#showtransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/file/file/
http://openbiometrics.org/docs/plugin_docs/metadata/#cascadetransform
http://openbiometrics.org/docs/plugin_docs/gui/#drawtransform
http://openbiometrics.org/docs/api_docs/cpp_api/template/template/

Last update: 2021/12/06 15:24 wallabag:tutorials---openbr https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

https://schnipsl.qgelm.de/ Printed on 2025/07/17 20:42

href=„http://openbiometrics.org/docs/api_docs/cpp_api/file/file/“>Files. Images in OpenBR are
OpenCV Mats and are member variables of Templates. Templates can contain one or more
images. <p>If you want to learn more about the command line or all of the plugins and the key data
structures, please refer to the linked documentation. The next few tutorials will explore
algorithms and their use in more depth.</p> <hr/><p>One advantage of OpenBR is the ease with
which one can express biometrics algorithms in a consistent and simple way. In OpenBR, an algorithm
string defines a technique for enrolling images and (optionally) a method for comparing them.</p>
<p>Instead of storing the entire raw image for comparison, it is common practice to store an
optimized representation, or template, of the image for the task at hand. We note for
the sake of clarity that while the OpenBR object Template gets it
name from this concept, template is a more general biometrics concept. The process of
generating this optimized representation is called template enrollment or
template generation. Given two templates, template comparison
computes the similarity between them, where the higher values indicate more probable matches.
Operationally, one seeks to generate templates that are small, accurate, and fast to compare.</p>
<p>As previously noted, an algorithm is defined in OpenBR through an algorithm string. There are
several advantages in mandating that algorithms are defined from strings, the most important of
which are the following:</p> It ensures good software development practices by forcibly
decoupling the development of each step in an algorithm, facilitating the modification of algorithms
and the re-use of individual steps. It spares the creation and maintenance of a lot of very
similar header files that would otherwise be needed for each step in an algorithm (observe the
absence of headers in

openbr/plugins

files). It allows for algorithm parameter tuning without recompiling. It is completely
unambiguous, both the OpenBR interpreter and anyone familiar with the project can understand
exactly what your algorithm does just from this description. <p>OpenBR provides a syntax
for setting plugin property values and creating concise algorithm strings. The relevant symbols
are:</p> <table><thead><tr><th>Symbol</th> <th>Meaning</th> </tr></thead><tbody
readability=„9“><tr
readability=„5“><td>PluginName(property1=value1,…propertyN=valueN)</td> <td>A plugin is
described by its name (without the abstraction) and a list of properties and values. Properties of a
plugin that are not specified are set to their default values.</td> </tr><tr
readability=„5“><td>:</td> <td>Seperates template enrollment from template
comparison. Enrollment is on the left of the colon in the algorithm string, while comparison is
on the right. Defining an algorithm with a template comparison step is optional.</td> </tr><tr
readability=„3“><td>+</td> <td>Abbreviation for a Pipe. Joins Transforms
together and projects input through them in series. The output of a Transform to the
left of + become the input of the Transform to the right.</td> </tr><tr readability=„4“><td>/</td>
<td>Abbreviation for a Fork. Joins Transforms
together and projects input through them in parallel. All Transforms

http://openbiometrics.org/docs/api_docs/cpp_api/file/file/
http://openbiometrics.org/docs/api_docs/cl_api/
http://openbiometrics.org/docs/api_docs/cpp_api/
http://openbiometrics.org/docs/api_docs/cpp_api/template/template/
http://openbiometrics.org/docs/plugin_docs/core/#pipetransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/plugin_docs/core/#forktransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/

2025/07/17 20:42 7/14 Tutorials - OpenBR

Qgelm - https://schnipsl.qgelm.de/

receive the same input, the output of which is concatenated together.</td> </tr><tr
readability=„1“><td>{}</td> <td>Abbreviation for Cache. Cache the
output of a plugin in memory for quick lookups later on.</td> </tr><tr
readability=„3“><td><></td> <td>Abbreviation for LoadStore.
Parameters for Transforms inside
the brackets are stored on disk after training and loaded from disk before projection.</td> </tr><tr
readability=„1“><td>()</td> <td>Order of operations. Change the order of operations using
parantheses.</td> </tr></tbody></table><p>Let's look at some of the important parts of the
codebase that make this possible:</p> <p>In

AlgorithmCore::init()

in

openbr/core/core.cpp

you can see the code for splitting the algorithm description at the colon. Shortly thereafter in this
function we

make

the template generation and comparison objects. These

make

calls are defined in the public C++
plugin API and can also be called from end user code.</p> <p>Below we discuss some of the
source code for

Transform::make

in

openbr/openbr_plugin.cpp

. Note, the

make

functions for other plugin types are similar in spirit and will not be covered.</p> <p>One of the first
steps when converting the template generation description into Transforms is to
replace the operators, like '+', with their full form:</p> <pre>{ Check for use of '+' as shorthand for
Pipe(…) QStringList words = parse(str, '+'); if (words.size() > 1) return make(„Pipe([“ +
words.join(„,“) + „])“, parent); } </pre> <p>After operator expansion, the template enrollment
description forms a tree, and the Transform is

http://openbiometrics.org/docs/plugin_docs/core/#cachetransform
http://openbiometrics.org/docs/plugin_docs/core/#loadstoretransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/

Last update: 2021/12/06 15:24 wallabag:tutorials---openbr https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

https://schnipsl.qgelm.de/ Printed on 2025/07/17 20:42

constructed from this description recursively, starting at the root of the tree:</p> <pre>Transform
*transform = Factory<Transform>::make(„.“ + str); </pre> <p>Let's use the algorithm in
<code>scripts/helloWorld.sh</code> as an example. The algorithm is:</p>
<pre>Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.33,0.45)+CvtFloat+PCA(
0.95):Dist(L2) </pre> <p>Let's expand this using our new knowledge of OpenBR's algorithm syntax.
First, the algorithm will be split into enrollment and comparison portions at the <code>:</code>. So
enrollment becomes:</p>
<pre>Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.33,0.45)+CvtFloat+PCA(
0.95) </pre> <p>and comparison is:</p> <pre>Dist(L2) </pre> <p>On the enrollment side, Transforms joined
by the <code>+</code> operators are converted into children of a Pipe. Thus, the
enrollment algorithm is constructed as:</p>
<pre>Pipe(transforms=[Open,Cvt(Gray),Cascade(FrontalFace),ASEFEyes,Affine(128,128,0.33,0.45,Cv
tFloat,PCA(0.95)]) </pre> <p>Low-level detail of the operations involved in this algorithm can be
found in the project
function implemented by each of these Transforms. To
briefly summarize:</p> <pre>1. Reads the image from disk 2. Converts the image to grayscale 3.
Detects faces 4. Detects eyes in detected faces 5. Normalize the face with respect to rotation and
scale using the eye locations 6. Converts the image to floating point format 7. Embeds the image in a
PCA subspace trained on face images </pre> <p>If you are familiar with face recognition, you will
likely recognize this as the Eigenfaces<sup id=„fnref:1“/> algorithm.</p> <p>As a final note, the
Eigenfaces algorithms uses the Euclidean distance (or L2-norm) to compare templates. Since OpenBR
expects similarity values when comparing templates and not dissimilarity values, the DistDistance will
return -log(distance+1) by default so that smaller distances (in the Euclidean sense)
indicate higher similarity. Note that NegativeL
ogPlusOne distance also exists such that you can convert the output of any distance using the
above function.</p> <hr/><p>OpenBR makes it easy to create and train your own algorithms on
custom datasets. Let's start with the algorithm string for the Eigenfaces<sup id=„fnref:1“/> algorithm
described in the <a href=„http://openbiometrics.org/docs/tutorials/#algorithms-in-
openbr“>Algorithms tutorial. Recall that the algorithm is:</p> <pre>$
Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.33,0.45)+CvtFloat+PCA(0.95)
</pre> <p>Suppose we want to train this algorithm on some data we gathered. First, let's examine
some of the underlying principles of training in OpenBR. Recall that every algorithm is composed of
Transforms
but not all Transforms need
to be trained. In our example, <code>Cvt(Gray)</code>, which converts the image to grayscale,
does not need to be trained at all, and neither does <code>Open</code>,
<code>ASEFEyes</code>, <code>Affine(128,128,0.33,0.45)</code> or <code>CvtFloat</code>.
These are
UntrainableTransforms (a subclass of Transform).
<code>Cascade(FrontalFace)</code> is a special case; it is a Transform and
therefore can be trained. However, we have passed it an argument indicating it should use pre-

http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/plugin_docs/core/#pipetransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/functions/#project-1
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/plugin_docs/distance/#distdistance
http://openbiometrics.org/docs/plugin_docs/distance/#negativelogplusonedistance
http://openbiometrics.org/docs/tutorials/#algorithms-in-openbr
http://openbiometrics.org/docs/tutorials/#algorithms-in-openbr
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/untrainabletransform/untrainabletransform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/

2025/07/17 20:42 9/14 Tutorials - OpenBR

Qgelm - https://schnipsl.qgelm.de/

trained model (<code>FrontalFace</code>). Thus, <code>PCA(0.95)</code> is the only trainable
Transform in
our algorithm string. For the sake of completeness, we note that this transform is performing principal
component analysis and retaining dimensions that account for 95% of the variance.</p> <p>Of
course, we need to supply data to train our algorithm. Let's step back and consider the full training
command. An example of this might be:</p> <pre>$ br -algorithm
„Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.33,0.45)+CvtFloat+PCA(0.95)“
-train training_data.csv EigenFaces </pre> <p>Notice the <code>-train</code> flag used in the
algorithm. -train requires at
least one argument, a training Gallery. Note that
certain Transforms
expect labelled training data. While -train needs only a single gallery
Gallery, more than
one can be provided:</p> <pre>$ br -algorithm
„Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.33,0.45)+CvtFloat+PCA(0.95)“
-train training_data1.csv training_data2.csv EigenFaces </pre> <p>-train has an optional second
argument: the name for a trained model (<code>EigenFaces</code> in the example above). The
optional model file is a serialized and compressed binary file that stores the parameters learned
during algorithm training. The model file should only be considered optional when your algorithm
string uses a LoadStoreTransform</
a> (discussed in depth later in this tutorial). Otherwise, none of the parameters learned during
algorithm training will be stored!</p> <p>As was briefly discussed above, each Transform in is
either trainable or not (in our case only <code>PCA(0.95)</code> is trainable). At train time, the training data is
projected through each
UntrainableTransform in sequence, just as it would be at test time. When the data reaches a
trainable transform, the train
method is called with the data projected through the preceding Transforms as its
input. After training, the project method is called on the newly trained transform and the data
continues to propagate through the algorithm.</p> <p>After training is complete the algorithm is
serialized to a model file (if you have specified one). The algorithm string is serialized first such that
the algorithm can be recreated, followed by the parameters for each transform using the store method.
Note that only trainable Transforms need
to implement store because

UntrainableTransforms can be recreated solely from their algorithm string descriptions.</p>
<p>We can then -enroll

http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cl_api/#train
http://openbiometrics.org/docs/api_docs/cpp_api/gallery/gallery/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cl_api/#train
http://openbiometrics.org/docs/api_docs/cpp_api/gallery/gallery/
http://openbiometrics.org/docs/api_docs/cl_api/#train
http://openbiometrics.org/docs/plugin_docs/core/#loadstoretransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/members/#trainable
http://openbiometrics.org/docs/api_docs/cpp_api/untrainabletransform/untrainabletransform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/functions/#train-1
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/object/functions/#store
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/object/functions/#store
http://openbiometrics.org/docs/api_docs/cpp_api/untrainabletransform/untrainabletransform/
http://openbiometrics.org/docs/api_docs/cl_api/#enroll

Last update: 2021/12/06 15:24 wallabag:tutorials---openbr https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

https://schnipsl.qgelm.de/ Printed on 2025/07/17 20:42

images using the trained algorithm by replacing the algorithm string with the model file:</p> <pre>$
br -algorithm EigenFaces -enroll enroll_data.csv enroll_data.gal </pre> <p>In the case that we want
our training and testing algorithms to be different, we can use LoadStoreTransform</
a> to serialize specific parts of the algorithm string. Reusing our EigenFaces example, we could
specify that only <code>CvtFloat</code> and <code>PCA(0.95)</code> should be serialized to the
model, allowing the other algorithmic steps to be specified at test time. The command to accomplish
this is:</p> <pre>$ br -algorithm
„Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.33,0.45)+<CvtFloat+PCA(0.
95),EigenFaces>“ -train training_data.csv </pre> <p>Recall from the Algorithms tutorial that
<code><></code> is shorthand for a LoadStoreTransform</
a>. Also note that the LoadStoreTransform</
a> takes two arguments: the algorithm string and an optional model name. If a name is not provided,
a random name is created. Using this model would like this:</p> <pre>$ br -algorithm
„Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.2,0.55)+<EigenFaces>“
</pre> <p>Since we haven't serialized that portion of the algorithm, the parameters of
<code>Affine</code>, for example, can now be changed at test time! Note that, in this contrived
example, changing the <code>Affine</code> parameters will severely degrade performance. As a
final note, when a LoadStoreTransform</
a> is present in the algorithm string used for training, OpenBR will not overwrite the specified model
file if it already exists. Instead, it will load the old model file and treat the associated Transforms as
untrainable (as they have already been trained!). This can helpful when you want to isolate a
particular algorithmic step (e.g. to explore parameters) but don't want to retrain every part of the
algorithm during each iteration.</p> <p>Now that we've covered training a generic algorithm, the
next tutorials will cover popular use cases supported by OpenBR including FaceRecognition, Age Estimation, and Gender Estimation.</p>
<hr/><p>This tutorial gives an example on how to perform face recognition in OpenBR. OpenBR
implements the 4SF<sup id=„fnref:2“/> algorithm to perform face recognition. Please read the paper
for more specific algorithm details.</p> <p>To start, lets run face recognition from the command
line. Open the terminal and enter</p> <pre>$ br -algorithm FaceRecognition \ -compare
../data/MEDS/img/S354-01-t10_01.jpg ../data/MEDS/img/S354-02-t10_01.jpg \ -compare
../data/MEDS/img/S354-01-t10_01.jpg ../data/MEDS/img/S386-04-t10_01.jpg </pre> <p>Easy
enough? You should see results printed to terminal that look like</p> <pre>$ Set algorithm to
FaceRecognition $ Loading /usr/local/share/openbr/models/algorithms/FaceRecognition $ Loading
/usr/local/share/openbr/models/transformsFaceRecognitionExtraction $ Loading
/usr/local/share/openbr/models/transformsFaceRecognitionEmbedding $ Loading
/usr/local/share/openbr/models/transformsFaceRecognitionQuantization $ Comparing
../data/MEDS/img/S354-01-t10_01.jpg and ../data/MEDS/img/S354-02-t10_01.jpg $ Enrolling
../data/MEDS/img/S354-01-t10_01.jpg to S354-01-t10_01r7Rv4W.mem $ 100.00% ELAPSED=00:00:00
REMAINING=00:00:00 COUNT=1 $ 100.00% ELAPSED=00:00:00 REMAINING=00:00:00 COUNT=1 $
1.8812 $ Comparing ../data/MEDS/img/S354-01-t10_01.jpg and ../data/MEDS/img/S386-04-t10_01.jpg
$ Enrolling ../data/MEDS/img/S354-01-t10_01.jpg to S354-01-t10_01r7Rv4W.mem $ 100.00%
ELAPSED=00:00:00 REMAINING=00:00:00 COUNT=1 $ 100.00% ELAPSED=00:00:00
REMAINING=00:00:00 COUNT=1 $ 0.571219 </pre> <p>So, what is

http://openbiometrics.org/docs/plugin_docs/core/#loadstoretransform
http://openbiometrics.org/docs/tutorials/#algorithms-in-openbr
http://openbiometrics.org/docs/plugin_docs/core/#loadstoretransform
http://openbiometrics.org/docs/plugin_docs/core/#loadstoretransform
http://openbiometrics.org/docs/plugin_docs/core/#loadstoretransform
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/tutorials/#face-recognition
http://openbiometrics.org/docs/tutorials/#age-estimation
http://openbiometrics.org/docs/tutorials/#gender-estimation

2025/07/17 20:42 11/14 Tutorials - OpenBR

Qgelm - https://schnipsl.qgelm.de/

FaceRecognition

? It's an abbrieviation to simplify execution of the algorithm. All of the algorithm abbreviations are
located in

openbr/plugins/core/algorithms.cpp

.</p> <p>It is also possible to:</p> <ul readability=„11“><li readability=„6“> <p>Evaluate face
recognition performance (Note that this requires R to be
installed):</p> <pre>$ br -algorithm FaceRecognition -path ../data/MEDS/img/ \ -enroll
../data/MEDS/sigset/MEDS_frontal_target.xml target.gal \ -enroll
../data/MEDS/sigset/MEDS_frontal_query.xml query.gal \ -compare target.gal query.gal scores.mtx \ -
makeMask ../data/MEDS/sigset/MEDS_frontal_target.xml ../data/MEDS/sigset/MEDS_frontal_query.xml
MEDS.mask \ -eval scores.mtx MEDS.mask Algorithm_Dataset/FaceRecognition_MEDS.csv \ -plot
Algorithm_Dataset/FaceRecognition_MEDS.csv MEDS </pre> <li readability=„3“> <p>Perform
a 1:N face recognition search:</p> <pre>$ br -algorithm FaceRecognition -enrollAll -enroll
../data/MEDS/img 'meds.gal' $ br -algorithm FaceRecognition -compare meds.gal
../data/MEDS/img/S001-01-t10_01.jpg match_scores.csv </pre> <li readability=„16“> <p>Train
a new face recognition algorithm (on a different dataset):</p> <pre>$ br -algorithm
'Open+Cvt(Gray)+Cascade(FrontalFace)+ASEFEyes+Affine(128,128,0.33,0.45)+(Grid(10,10)+SIFTDe
scriptor(12)+ByRow)/(Blur(1.1)+Gamma(0.2)+DoG(1,2)+ContrastEq(0.1,10)+LBP(1,2)+RectRegions(
8,8,6,6)+Hist(59))+PCA(0.95)+Normalize(L2)+Dup(12)+RndSubspace(0.05,1)+LDA(0.98)+Cat+PCA(
0.95)+Normalize(L1)+Quantize:NegativeLogPlusOne(ByteL1)' -train ../data/ATT/img
FaceRecognitionATT </pre> <p>The entire command line API is documented here.</p> <hr/><p>Age estimation is
very similar in spirit to Face
Recognition and will be covered in far less detail.</p> <p>To perform age estimation from the
command line you can run:</p> <pre>$ br -algorithm AgeEstimation \

enroll ../data/MEDS/img/S354-01-t10_01.jpg ../data/MEDS/img/S001-01-t10_01.jpg metadata.csv1.

</pre> <p>The results will be stored in metadata.csv under the key 'Age'. Remember from the Face Recognition tutorial that

AgeEstimation

is just an abbreviation for the full algorithm description.</p> <p>The source code to run age
estimation as an application is in

app/examples/age_estimation.cpp

</p> <hr/><p>As with age estimation, gender estimation is very similar in spirit to Face Recognition and will be
covered in far less detail.</p> <p>To perform gender estimation from the command line you can
run:</p> <pre>$ br -algorithm GenderEstimation \

enroll ../data/MEDS/img/S354-01-t10_01.jpg ../data/MEDS/img/S001-01-t10_01.jpg metadata.csv1.

</pre> <p>The results will be stored in metadata.csv under the key 'Gender'. Remember from the
Face Recognition tutorial
that

http://www.r-project.org/
http://openbiometrics.org/docs/api_docs/cl_api/
http://openbiometrics.org/docs/tutorials/#face-recognition
http://openbiometrics.org/docs/tutorials/#face-recognition
http://openbiometrics.org/docs/tutorials/#face-recognition
http://openbiometrics.org/docs/tutorials/#face-recognition

Last update: 2021/12/06 15:24 wallabag:tutorials---openbr https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

https://schnipsl.qgelm.de/ Printed on 2025/07/17 20:42

GenderEstimation

is just an abbreviation for the full algorithm description.</p> <p>The source code to run gender
estimation as an application is in

app/examples/gender_estimation.cpp

</p> <hr/><p>OpenBR exposes a C++ API that can be embedded into
your own applications. Let's step through the example code at

app/example/face_recognition.cpp

and learn about using OpenBR as a library.</p> <p>Our main function starts with:</p>
<pre>br::Context::initialize(argc, argv) </pre> <p>This is the first step in any OpenBR-based
application, it initializes the global context.</p> <pre>QSharedPointer<br::Transform>
transform = br::Transform::fromAlgorithm(„FaceRecognition“); QSharedPointer<br::Distance>
distance = br::Distance::fromAlgorithm(„FaceRecognition“); </pre> <p>Here, we split our algorithm
into enrollment (Transform::fromAlgori
thm) and comparison (Distance::fromAlgorit
hm)</p> <pre>br::Template queryA(„../data/MEDS/img/S354-01-t10_01.jpg“); br::Template
queryB(„../data/MEDS/img/S382-08-t10_01.jpg“); br::Template target(„../data/MEDS/img/S354-02-
t10_01.jpg“); </pre> <p>These lines create our Templates for
enrollment. At this point, the Templates simply store the file path to the specified image on disk. In
this example,

queryA

depicts the same person as

target

(often referred to as a genuine match) and

queryB

depicts a different person from

target

(often referred to as an impostor match).</p> <pre>queryA >> *transform;
queryB >> *transform; target >> *transform; </pre> <p>

>>

http://openbiometrics.org/docs/api_docs/cpp_api/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/statics/#fromalgorithm
http://openbiometrics.org/docs/api_docs/cpp_api/distance/distance/
http://openbiometrics.org/docs/api_docs/cpp_api/distance/statics/#fromalgorithm
http://openbiometrics.org/docs/api_docs/cpp_api/template/template/

2025/07/17 20:42 13/14 Tutorials - OpenBR

Qgelm - https://schnipsl.qgelm.de/

is a convienience operator for enrolling Templates in Transforms. Thus,
at this stage, our Templates now
store the images enrolled via the

FaceRecognition

algorithm.</p> <pre>float comparisonA = distance->compare(target, queryA); float comparisonB
= distance->compare(target, queryB); </pre> <p>We then compare our query Templates against
the target Template. The
result is a floating point value indicating similarity.</p> <pre>printf(„Genuine match score: %.3f\n“,
comparisonA); printf(„Impostor match score: %.3f\n“, comparisonB); </pre> <p>After printing the
results, you can see that

comparisonA

(between

queryA

and

target

) has a higher similarity score then

comparisonB

, which is exactly what we expect!</p> <pre>br::Context::finalize(); </pre> <p>The last line in any
OpenBR application has to be call to

finalize

. This functions performs the clean up of OpenBR.</p> <p>That's it! You can now embed face
recognition into all of your applications.</p> <hr/><p>OpenBR implements a complete, NIST compliant, evaluation harness for evaluating face
recognition, face detection, and facial landmarking. The goal is to provide a consistent environment
for the repeatable evaluation of algorithms to the academic and open source communities. To
accompish this OpenBR defines the following portions of the biometrics evaluation environment (BEE)
standard-</p> <ul readability=„5“><li readability=„3“> <p>Signature set - A signature set (or
sigset) is an XML file-list specified on page 9 of the MBGC File Overview and is
implemented in xmlGallery. Sigsets are
identified with an

http://openbiometrics.org/docs/api_docs/cpp_api/template/template/
http://openbiometrics.org/docs/api_docs/cpp_api/transform/transform/
http://openbiometrics.org/docs/api_docs/cpp_api/template/template/
http://openbiometrics.org/docs/api_docs/cpp_api/template/template/
http://openbiometrics.org/docs/api_docs/cpp_api/template/template/
http://www.nist.gov/index.html
http://openbiometrics.org/docs/misc/MBGC_file_overview.pdf
http://openbiometrics.org/docs/plugin_docs/gallery/#xmlgallery

Last update: 2021/12/06 15:24 wallabag:tutorials---openbr https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

https://schnipsl.qgelm.de/ Printed on 2025/07/17 20:42

.xml

extension.</p> <li readability=„3“> <p>Similarity matrix - A similarity matrix (or
simmat) is a binary score matrix specified on page 12 of the MBGC File Overview and is
implemented in mtxOutput. Simmats are
identified with a

.mtx

extension. See br_eval for more
information.</p> <li readability=„4“> <p>Mask matrix - A mask matrix (or mask)
is a binary matrix specified on page 14 of the MBGC File Overview
identifying the genuine and impostor matches within a corresponding simmat. Masks
are identified with a

.mask

extension. See br_make_mask
and br_combine_ma
sks for more information.</p> <p>The evaluation harness is also accessible from
the command line. See -eval,
-evalDetection, -evalLandmarking, -evalClassification,
-evalClustering, or
-evalRegression for
relevant information.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

Last update: 2021/12/06 15:24

http://openbiometrics.org/docs/misc/MBGC_file_overview.pdf
http://openbiometrics.org/docs/plugin_docs/output/#mtxoutput
http://openbiometrics.org/docs/api_docs/c_api/functions/#br_eval
http://openbiometrics.org/docs/misc/MBGC_file_overview.pdf
http://openbiometrics.org/docs/api_docs/c_api/functions/#br_make_mask
http://openbiometrics.org/docs/api_docs/c_api/functions/#br_combine_masks
http://openbiometrics.org/docs/api_docs/cl_api/#eval
http://openbiometrics.org/docs/api_docs/cl_api/#evaldetection
http://openbiometrics.org/docs/api_docs/cl_api/#evallandmarking
http://openbiometrics.org/docs/api_docs/cl_api/#evalclassification
http://openbiometrics.org/docs/api_docs/cl_api/#evalclustering
http://openbiometrics.org/docs/api_docs/cl_api/#evalregression
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:tutorials---openbr

	[Tutorials - OpenBR]
	Tutorials - OpenBR

