2025/07/01 11:46 1/10 Typical problems and how to debug them

Typical problems and how to debug them

Originalartikel
Backup

<html> <hr/><p>Please note that republishing this article in full or in part is only allowed under the
conditions described here.</p>
<p>This guide tries to help with debugging of SSL/TLS problems and shows the most common
problems in interaction between client and server. It is not intended to help with writing applications
and thus does not care about specific API's etc. But it should help with problems outside of a specific
API, like different or broken SSL stacks or misconfigurations.</p> <p>The guide is based on the
knowledge gained as the maintainer of the <a href=, https://metacpan.org/pod/IO::Socket::SSL“
target=,_blank“>10::Socket::SSL Perl module or by debugging SSL problems at work or <a
href=,,http://stackoverflow.com/search?tab=newest&q=user%3a3081018%20%5bss!|%5d"
target=,_blank“>for fun.</p> <p>Unfortunatly SSL/TLS is a hard to debug protocol
because:</p> Error messages are missing, are not very specific or even hide the real
problem. There are lots of broken configurations and SSL stacks in the wild. And while
browsers try to work around it as much as possible the stacks in applications or scripts are mostly not
that tolerant. There are lots of bad tips out there which often only work around the
underlying problem by seriously degrading the security of the protocol. Deeper knowledge
of the protocol and standards is necessary to understand and fix most problems instead of applying
some insecure workaround found somewhere on the internet. <hr/> Basic information <li
class=,cl"“> <a href=,,https://maulwuff.de/research/ssl-
debugging.html#hdrl.1“>Useful/required knowledge Common misunderstandings about
SSL/TLS Security
relevant errors which don't cause obvious problems Start with debugging <li
class=,cl"“> Useful
tools for debugging <a href=, https://maulwuff.de/research/ssl-
debugging.html#hdr2.2“>The usual steps in debugging How to check for common
problems <a href=,https://maulwuff.de/research/ssl-
debugging.html#hdr3“>Commonly seen and more unusual problems <li class=,c1“>
Common problems
caused by SSL stacks at server, client or middlebox Common problems caused by
misconfiguration <a href=,,https://maulwuff.de/research/ssl-
debugging.html#hdr3.3“>Problems due to bad certificates Problems caused by inconsistent
handling of root certificates More unusal but existing
problems <a href=,https://maulwuff.de/research/ssl-
debugging.html#hdr4“>Finding and fixing the problem <li class=,cl1“> Problem solving by error message
or symptom <a href=,https://maulwuff.de/research/ssl-
debugging.html#hdr4.2“>When it worked before, works with other applications, servers ...
It still does not

Qgelm - https://schnipsl.qgelm.de/

https://maulwuff.de/research/ssl-debugging.html
https://www.qgelm.de/wb2html/wb529.html
https://maulwuff.de/research/republish.html
https://metacpan.org/pod/IO::Socket::SSL
http://stackoverflow.com/search?tab=newest&q=user%3a3081018%20%5bssl%5d
https://maulwuff.de/research/ssl-debugging.html#hdr1
https://maulwuff.de/research/ssl-debugging.html#hdr1.1
https://maulwuff.de/research/ssl-debugging.html#hdr1.1
https://maulwuff.de/research/ssl-debugging.html#hdr1.2
https://maulwuff.de/research/ssl-debugging.html#hdr1.3
https://maulwuff.de/research/ssl-debugging.html#hdr2
https://maulwuff.de/research/ssl-debugging.html#hdr2.1
https://maulwuff.de/research/ssl-debugging.html#hdr2.2
https://maulwuff.de/research/ssl-debugging.html#hdr2.2
https://maulwuff.de/research/ssl-debugging.html#hdr2.3
https://maulwuff.de/research/ssl-debugging.html#hdr3
https://maulwuff.de/research/ssl-debugging.html#hdr3
https://maulwuff.de/research/ssl-debugging.html#hdr3.1
https://maulwuff.de/research/ssl-debugging.html#hdr3.2
https://maulwuff.de/research/ssl-debugging.html#hdr3.3
https://maulwuff.de/research/ssl-debugging.html#hdr3.3
https://maulwuff.de/research/ssl-debugging.html#hdr3.4
https://maulwuff.de/research/ssl-debugging.html#hdr3.5
https://maulwuff.de/research/ssl-debugging.html#hdr4
https://maulwuff.de/research/ssl-debugging.html#hdr4
https://maulwuff.de/research/ssl-debugging.html#hdr4.1
https://maulwuff.de/research/ssl-debugging.html#hdr4.2
https://maulwuff.de/research/ssl-debugging.html#hdr4.2
https://maulwuff.de/research/ssl-debugging.html#hdr4.3

Last
update:
2021/12/06
15:24

wallabag:typical-problems-and-how-to-debug-them https://schnipsl.qgelm.de/doku.php?id=wallabag:typical-problems-and-how-to-debug-them

work <hr/> <h2>Useful/required knowledge</h2> <p>While SSL/TLS is a
complex protocol there a some basics one should understand in order to debug and fix most
problems:</p> <lIi>SSL/TLS provides encryption and identification. Encryption without
proper identification (or a pre-shared secret) is insecure, because Man-in-the-middle
attacks (MITM) are possible. ldentification is mostly done with certificates:
Builtin trust anchors (Root-CA) in the application (e.g. browser, mobile app, ...).
The server provides its own certificate and the intermediate certificates (trust chain) leading to
the trust anchor. A similar mechanism can be used to authenticate the client too (client
certificates). The servers certificate must match the expected identity, i.e. usually the
hostname. For HTTPS see RFC
2818 and <a href=, https://cabforum.org/baseline-requirements-documents/“
target=,_blank“>CA Browser Forum Baseline Requirements for details, for other protocols see
RFC 6125.
<a href=, https://www.owasp.org/index.php/Certificate_and_Public_Key Pinning“
target=,_blank“>Certificate/public key pinning can be used as an alternative to local trust
anchors In this case the application knows up-front the fingerprint of the certificate or
embedded public key. This fingerprint is hard-coded into the application. A lesser
secure alternative saves the fingerprint on the first connect to the peer. Of course this can not detect
if an MITM attack is already done on the first connect and then trust the attacker for future
connections. There are different versions of the protocol (SSL 3.0, TLS 1.0...TLS
1.2), each fixing design flaws in the previous version or adding features. <Ii>TLS 1.0 is in reality
SSL 3.1, but the name of protocol has been changed. <Ili>TLS extensions like Server Name Indication
(SNI) can only be done with TLS1.x. SSL 3.0 is considered broken (POODLE) and should no longer be
used. Cipher suites decide about methods for authentication, encryption ...
Cipher suites are mostly independend of the protocol version. The version only specifies
when this cipher was introduced: There are no TLS1.0 or TLS1.1 cipher suites, but TLS1.2
added some. SSL3.0 ciphers are still used in TLS1.x Ciphers vary in
their strength and there are weak ciphers which should no longer be used. There are lots of resources
about the optimal ciphers, one of them is <a href=, https://wiki.mozilla.org/Security/Server_Side TLS“
target=,_blank“>Mozilla. Before the encryption starts the peers agree to
the protocol version and cipher used within the connection, exchange certificates used for
authentication and exchange the keys for encryption. Aimost all of the problems occure within this
initial handshake. <h2>Common misunderstandings about SSL/TLS</h2> | only
want encryption and don't like all this certificate stuff: <Ili>Any encryption without identifcation
(or a shared secret) is open to MITM attacks. A self-signed certificate is secure
enough: True, but only if the certificate is trusted up-front in the application, like with certificate/public key
pinning. l want TLS, but not SSL: <Ii>TLS1.0 is SSL3.1, that is they
changed the name of the protocol. In the context of SMTP, IMAP or FTP, ,SSL“ is often used
to describe SSL/TLS from start, while , TLS" is used to describe upgrade to SSL/TLS after some kind of
STARTTLS command. It is better to use ,implicit* and , explicit” SSL/TLS here.
Disabling SSL3.0 (because of POODLE) can be done by disabling all SSL3.0 ciphers: Not
really, because these ciphers are needed for TLS1.x too. You should disable the SSL3.0 protocol
instead. <h2>Security relevant errors which don't cause obvious
problems</h2> <p>These kind of problems are not obvious, because everything seems to work fine.
But they open ways for attacks and thus need to be fixed. Unfortunatly, often these kind of problems

https://schnipsl.qgelm.de/ Printed on 2025/07/01 11:46

http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://tools.ietf.org/html/rfc2818
https://cabforum.org/baseline-requirements-documents/
http://tools.ietf.org/html/rfc6125
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
http://en.wikipedia.org/wiki/Server_Name_Indication
http://de.wikipedia.org/wiki/Poodle
https://wiki.mozilla.org/Security/Server_Side_TLS
https://maulwuff.de/research/ssl-debugging.html#pinning

2025/07/01 11:46 3/10 Typical problems and how to debug them

are caused by an attempt to fix another problem and by not understanding the security implications
of the applied workaround.</p> Use of insecure protocols or features: <I[i>SSL2.0,
SSL3.0 are broken and should not be used. Other attacks are possible by using insecure
renegotiation, compression For details see <a
href=,,http://en.wikipedia.org/wiki/Transport_Layer Security#Attacks against TLS.2FSSL"
target=,_blank“>Wikipedia Use of insecure implementations: In
2014 all major TLS stacks where affected by serious implementation problems: OpenSSL Heartbleed, Apple Secure Transport goto fail, Microsoft SChannel <a

href=, http://www.tripwire.com/state-of-security/top-security-stories/microsoft-plugs-winshock-a-critic
al-19-year-old-rce-bug/“ target=,,_blank“>Winshock, and certificate verification problems with
GnuTLS
Insecure certificate checks: Due to insecure defaults in lots of programming languages
(Python, Ruby, PHP, Perl...) or libraries, certificates are either not verfified at all or only the trust chain
is verified but not the hostname against the certificate. This gets only slowly fixed because the
developers fear to break existing code. Because proper certificate checking is often in the
way of testing, lots of iOS- and Android developers explicitly disable these checks and fail to enable
checks in production version. Lots of applications don't have proper hostname checks, i.e.
accept wildcards anywhere or multiple wildcards or even check the subject against a regex.
Sometimes these checks are too broad, but in some cases they are too narrow (missing check of
subject alterative names) so users disable checks completely. Use of insecure
ciphers Some application just accept 'ALL', which includes very weak cphers (EXPORT, LOW)
and also anonymous cipher suites (with no authentication) which make MITM easy. Others
allow or even require broken ciphers like DES-CBC-SHA or RC4-SHA.
<h2>Useful tools for debugging</h2> <p>O0ften an error message alone is not sufficient to solve the
problem. In this case the following tools can be of help:</p> SSLLabs can be used to
check problems with public accessible HTTPS servers. It shows problems about certificate verification
and also about potential problems with specific TLS clients. In case it is not https or the
server is not public accessible analyze.pl
from my SSL tools can help. It can be used to debug TLS problems with plain TLS or explicit TLS
on SMTP, IMAP, POP3 and FTPS and with HTTP proxies. openssl helps with debugging too,
especially with the s_client, s_server and x509 commands. And wireshark can be used to
analyse packet captures done by tcpdump or wireshark. It is able to show lots of details about the TLS
handshake. <h2>The usual steps in debugging</h2> <p> The steps shown here are
useful to solve the problem. Even if one can not solve the problem by oneself by using these steps it
is recommended to do as much of them as possible and provide the collected information to anybody
willing to help. Chances are much higher that they will then look into the problem.</p>
Collect error messages and compare them with the solutions/descriptions
below. Do any of the proposed tools show information which might explain the
problem? Narrow down the problem to the client or the server or something in between, i.e.
Try to access the same server from different clients (browsers, apps, ...). Try to
access the same server from different networks. If possible access server from the servers machine or
at least from the servers local network. Try to access different servers from the same
client. Check for known problems
with the SSL stack used by the affected application. If the affected part is one's own
application: try to strip it down as much as possible and remove any customization which might cause
the problems. If other peers work: look at their traffic and try to restrict protocol version,

Qgelm - https://schnipsl.qgelm.de/

http://en.wikipedia.org/wiki/Transport_Layer_Security#Attacks_against_TLS.2FSSL
http://heartbleed.com/
https://gotofail.com/
http://www.tripwire.com/state-of-security/top-security-stories/microsoft-plugs-winshock-a-critical-19-year-old-rce-bug/
http://www.tripwire.com/state-of-security/top-security-stories/microsoft-plugs-winshock-a-critical-19-year-old-rce-bug/
http://www.gnutls.org/security.html
https://www.ssllabs.com/ssltest/analyze.html
https://github.com/noxxi/p5-ssl-tools/blob/master/analyze-ssl.pl
https://maulwuff.de/research/ssl-debugging.html#solve_by_symptom
https://maulwuff.de/research/ssl-debugging.html#known_problems

Last
update:
2021/12/06
15:24

wallabag:typical-problems-and-how-to-debug-them https://schnipsl.qgelm.de/doku.php?id=wallabag:typical-problems-and-how-to-debug-them

ciphers to emulate their traffic. <p>If still not resolved: provide anybody willing to help
with the collected information and also with debug information and a packet capture in a form usable
by wireshark. Also provide information about the used SSL stacks (i.e. browser or application version,
programming language version, OS version).</p> <p>WARNING: while you might disable verification
or downgrade ciphers or protocol to insecure versions to track down the problem do not simply leave
it this way once you've ,fixed” the problem this way. Instead track down the cause of the problem
and fix it, especially:</p> Fix certificates if verification failed due to bad or self-signed
certificate. If this is not possible use certificate/public key pinning to accept only this bad
certificate. Don't restrict yourself to bad protocol versions or ciphers, even if these solve the
problem at the moment. There will be a time when the peer will be upgraded and then you will have
problems again. This happened a lot when SSL 3.0 got disabled (POODLE attack) and lots of clients
suddenly failed to connect, because they had hard-coded use of SSL 3.0 in their application.
<h2>How to check for common problems</h2> How to check if server requires SNI
Use 'openssl s_client’ with and without '-servername’ option. If the returned certificates
differ then SNI is required. Some servers even fail completly when accessed without SNI. SSLLabs will also tell you if the
site requires SNI (, This site works only in browsers with SNI support”). Use analyze.pl, it will tell you if
different certificates are returned with and without SNI. How to check for
missing chain certificates <a href=,,https://maulwuff.de/research/ssl-
debugging.html#sslabs“>SSLLabs will tell you if the chain is incomplete (,,Chain Issues”) and will
try to show the missing intermediate certificates. analyze.pl -show-chain will
show the chain too, but not the missing certificates. How to check for trusted
Root-CA SSLLabs
will check if one of the common CA is used as the trust anchor. analyze.pl will check
against system CA (or Mozilla's CA on Windows and Mac OS X), but can also check against a
certificate store specified by the user. 'openss| s_client' can check against a given CA. But it
will in this case also check against OpenSSL default CA's too, so the result can be misleading.
 How to check using a client certificate analyze.pl can be given a
client certificate. 'openss| s_client' can also use client certificate. How
to check which ciphers and protocols are supported by the server. SSLLabs will show the available
ciphers and protocols and also emulate the behavior of specific clients to see if a connection should
be successful or why not. Please check that their tests use the same IP address as you do, notably
SSLLabs currently does not support IPv6 addresses. analyze.pl -all-ciphers
shows which ciphers of the locally installed OpenSSL are supported by the peer. It will also show if the
server chooses the cipher based on clients or servers preferences. It also shows protocol
support. How do | perform the checks if explicit TLS is used (STARTTLS etc)
analyze.pl
supports SMTP, IMAP, FTP, POP3, HTTP proxy and PostgreSQL with the '-starttls' option.
'openssl s_client' supports SMTP, IMAP, FTP and POP3 with the '-starttls' option.
 <h2>Common problems caused by SSL stacks at server, client or middlebox</h2>
No SNI support for SSL 3.0, Android (depending on application), MSIE on XP, Java 6 and various other
programming languages. This will cause problems , when the server has multiple certificates on the
same IP address (like Cloudflare Free SSL). It will usually result in certification errors because the

https://schnipsl.qgelm.de/ Printed on 2025/07/01 11:46

https://maulwuff.de/research/ssl-debugging.html#sslabs
https://maulwuff.de/research/ssl-debugging.html#analyze_pl
https://maulwuff.de/research/ssl-debugging.html#sslabs
https://maulwuff.de/research/ssl-debugging.html#sslabs
https://maulwuff.de/research/ssl-debugging.html#analyze_pl
https://maulwuff.de/research/ssl-debugging.html#sslabs
https://maulwuff.de/research/ssl-debugging.html#analyze_pl
https://maulwuff.de/research/ssl-debugging.html#analyze_pl
https://maulwuff.de/research/ssl-debugging.html#sslabs
https://maulwuff.de/research/ssl-debugging.html#analyze_pl
https://maulwuff.de/research/ssl-debugging.html#analyze_pl

2025/07/01 11:46 5/10 Typical problems and how to debug them

wrong certificate is received. But in some cases the server will also just close the connection or issue
an alert or similar, depending on servers configuration and TLS stack. The fix is to upgrade to a
version which supports SNI. Workaround at the server is to have a separate IP address for the affected
certificates. <Ili>SNI is not supported by Internet Explorer 8 and older versions. If the system can
not be upgraded an alternative browser like Firefox, which is not using SChannel, can be used.
The Apache HTTPClient library as used in Android does not support SNI. For workarounds see <a
href=,,http://blog.dev001.net/post/67082904181/android-using-sni-and-tlsv1-2-with-apache”
target=,_blank“>here. No SNI in Java 6 and lower, Python 2 (until 2.7.8) and older
versions of other programming languages or packages. No workarounds for the client is known, that is
an upgrade is required. F5 Big IP: TLS handshake times out, because of no
response to ClientHello. Older versions of F5 Big IP simply absorb ClientHello
with a size between 256 and 511 bytes. Because TLS 1.2 offers more ciphers this mostly happens with
TLS 1.2 handshakes, but was also seen with TLS 1.1. Workaround is to reduce the number of ciphers
offered by the client. Fix is to patch the device. Newer versions of OpenSSL contain a workaround
SSL_OP_TLSEXT PADDING which can <a
href=,http://postfix.1071664.n5.nabble.com/OpenSSL-1-0-1g-and-Ironport-SMTP-appliances-interop-is
sue-td66873.html” target=,_blank“>break IronPort instead. wget <1.12: checks
hostname only against commonName, not against Subject Alternative Names. Fix is to upgrade
wget. <a href=,, http://phantomjs.org/api/command-line.htm|“
target=,_blank“>phantomjs currently defaults to SSL 3.0, which gets more and more disabled
by the servers because it is insecure. Use "-ssl-protocol=any" to use more recent versions of
TLS. Some servers are broken and don't support the most common SSLv23 handshake. But
cURL (at least version 7.41 with OpenSSL backend) will try an SSLv23
handshake in all cases, except when use of SSL 3.0 is explicitly requested. Other clients instead
can instead do a TLS1.0 only handshake. If “openss| s_client’ is used with the *-CAfile’
option it will not only check against the certificates given in this file but additionally against the
system defaults. Thus the result might be different between various systems
(http://stackoverflow.com/a/29115499/3081018][especially UNIX and Windows) because the defaults
differ. <h2>Common problems caused by misconfiguration</h2> Server allows
only allow bad ciphers, like RC4-SHA. Some clients like curl 7.35.0 have disabled these ciphers by
default (see <a href=, http://stackoverflow.com/a/25387211/3081018*

target=, blank“>workaround) and there are recommendations for others like <a

href=, http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation
-to-disable-rc4.aspx” target=,_blank“>Microsoft Windows. Administrators tried to
make systems safe against POODLE by disabling all SSL 3.0 ciphers instead of the protocol version.
Because these ciphers are needed for TLS1.0 and TLS1.1 clients, at most TLS1.2 clients could
connect. <h2>Problems due to bad certificates</h2> <p> Bad certificates are a very
common error. The most common problems are:</p> Self-signed certificates. In this case
the trust can not be checked against a local trust anchor and thus the certificate can not be trusted.
Browsers allow the user to explicitly trust the certificate. Certificate contents does not match
hostname. There are clear rules how the checks should be done, but some applications are less strict
and others implement the checks wrong: IP addresses should be stored as type IP in Subject
Alternative Names (SAN) section. Most browsers currently accept IP in commonName too, but Safari
does not. But for MSIE IP addresses <a href=, http://www.michaelm.info/blog/?p=1281"
target=,_blank“>have to be specified as DNS type inside the SAN section. Wildcards
are only allowed in Subject Alternative Names section. Most browsers currently accept wildcard in
commonName too, but not Safari. If a SAN section contains entries of type DNS than
commonName should not be checked. Most browsers currently check commonName too, but Safari
does not. Other applications do not check commonName, even if SAN section only contains entries for

Qgelm - https://schnipsl.qgelm.de/

http://blog.dev001.net/post/67082904181/android-using-sni-and-tlsv1-2-with-apache
https://bugzilla.mozilla.org/show_bug.cgi?id=923696
http://postfix.1071664.n5.nabble.com/OpenSSL-1-0-1g-and-Ironport-SMTP-appliances-interop-issue-td66873.html
http://postfix.1071664.n5.nabble.com/OpenSSL-1-0-1g-and-Ironport-SMTP-appliances-interop-issue-td66873.html
http://phantomjs.org/api/command-line.html
http://stackoverflow.com/a/29063203/3081018
http://stackoverflow.com/a/29115499/3081018][especially UNIX and Windows
http://stackoverflow.com/a/25387211/3081018
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
http://www.michaelm.info/blog/?p=1281

Last
update:
2021/12/06
15:24

wallabag:typical-problems-and-how-to-debug-them https://schnipsl.qgelm.de/doku.php?id=wallabag:typical-problems-and-how-to-debug-them

IP addresses. <p>In these cases either the certificate need to be fixed or the
application must import the certificate as trusted or use certificate/public key
pinning.</p> <p>Less common errors are:</p> Certificate expired or not yet
valid. Insecure certificates with a too small RSA key length or MD5 signatures. Most software
does not accept these certificates anymore. Some (or all?) browser require the extKeyUsage
of serverAuth inside the certificate, while most script languages ignore any usage restrictions.
<h2>Problems caused by inconsistent handling of root certificates</h2> <p> Each SSL stack
has its own way to handle the trust anchors (the root certificates). Even different applications using
the same stack often do not share the same root certificates:</p> Mozilla Firefox (NSS
library) comes with its own root certificates and can manage trust for each profile separatly.
Chrome uses the NSS library too (except on Android), but integrates with the systems CA store on
Windows and Mac OS X. On Linux platforms it uses its own trust store which is shared between
different Chrome accounts (,,People”). Internet Explorer on Windows and Safari on Mac OS X
use the systems CA store. Java comes with its own CA store. Python, Ruby, PHP,
Perl... can behave in different ways, depending on language version. Even packages inside these
languages might have their own rules: They might integrate with the OpenSSL CA store. This
works on UNIX, but on Windows this will mostly result in verification errors, because there is no
OpenSSL CA store. To get usable Root-CAs check <a href=,,http://curl.haxx.se/docs/caextract.htm
target=, blank“>here. They might come with their own CA store. They might
even try to integrate with the systems CA store on Windows. <h2>More unusal
but existing problems</h2> Mac OS X hacks into OpenSSL to verify against systems key
store if nothing is found in OpenSSL key store. Thus verification might succeed if failure was
expected. Some commonly used AntiSpamProxy just closes connection when it receives a
MD5-signed client certificate within a TLS1.2 connection. Using TLS1.1 or SHA-1 instead is no
problem. At least some versions of HP ILO2 cause a handshake failure with
»bad record mac” when used with TLS1.x. Workaround is to use only SSL3.0. Some SSL
stacks claim to support more ciphers or elliptic curves than they actually have implemented. This
might be due to misconfiguration, incomplete disabling of specific features at compile time or bugs.
See <a href=,http://comments.gmane.org/gmane.comp.encryption.openssl.user/53293*
target=,_blank“>this and <a href=, https://bugzilla.redhat.com/show_bug.cgi?id=1044401"
target=,_blank"“>that where you get ,elliptic curve routines: EC_GROUP_new_by curve_name:
unknown group” in the client. And in <a

href=, http://stackoverflow.com/questions/26481731/curl-unknown-ssl-protocol-error-in-connection/26
482202#26482202" target=,_blank“>this case the server just closes the connection.
Workaround is to disable the affected ciphers on the client side. The Perl package
LWP::UserAgent changed with version 6.0 (03/2011) the TLS backend from Crypt::SSLeay to
10::Socket::SSL but the https proxy support was broken until version 6.06 (04/2014). Before that fix
you usually got ,,Bad request” or similar back from the proxy. Python 3 might send a zero-
length server name extension (SNI), causing <a
href=,http://stackoverflow.com/questions/23616803/smtplib-smtp-starttls-fails-with-tlsv1-alert-decod
e-error/23617741#23617741" target=,_blank“>tlsv1 alert decode error. Cross-
Signing of CA certificates can result in multiple possible trust chains, depending on which chain
certificates the server is sending. Different SSL stacks behave differently when verifying these chains,
which can result in verification errors on <a

href=, http://www.confusedamused.com/notebook/fixing-verisign-certificates-on-windows-servers/*
target=, blank“>Windows or <a

href=, http://kriscience.blogspot.de/2013/03/supporting-trusted-but-untrusted.html*

|u

https://schnipsl.qgelm.de/ Printed on 2025/07/01 11:46

https://maulwuff.de/research/ssl-debugging.html#pinning
http://curl.haxx.se/docs/caextract.html
http://stackoverflow.com/a/26630320/3081018
http://comments.gmane.org/gmane.comp.encryption.openssl.user/53293
https://bugzilla.redhat.com/show_bug.cgi?id=1044401
http://stackoverflow.com/questions/26481731/curl-unknown-ssl-protocol-error-in-connection/26482202#26482202
http://stackoverflow.com/questions/26481731/curl-unknown-ssl-protocol-error-in-connection/26482202#26482202
http://stackoverflow.com/questions/23616803/smtplib-smtp-starttls-fails-with-tlsv1-alert-decode-error/23617741#23617741
http://stackoverflow.com/questions/23616803/smtplib-smtp-starttls-fails-with-tlsv1-alert-decode-error/23617741#23617741
http://www.confusedamused.com/notebook/fixing-verisign-certificates-on-windows-servers/
http://kriscience.blogspot.de/2013/03/supporting-trusted-but-untrusted.html

2025/07/01 11:46 7/10 Typical problems and how to debug them

target=, blank“>with OpenSSL. <h2>Problem solving by error message or
symptom</h2> <Ii>TCP connection failed or timed out: <Ili>This is no TLS problem at all.
In this case no TCP connection is possible to the peer, because the peer might be down, a firewall in
between or similar. Make sure that it is a really at the TCP level by using telnet or similar
tools. certificate verify fail Client with known verification
problems? ls SNI required by server, like with <a

href=, https://support.cloudflare.com/hc/en-us/articles/203274000-Does-CloudFlare-s-free-Universal-S
SL-have-limitations-“ target=,_blank“>Cloudflare free SSL? Does client support SNI?
Check for missing
chain certificates. Desktop browsers might work with missing chain certificates since they cache
these from previous sessions to other sites and also sometimes load them by URL given in related
certificates. Firefox does not do this, but Chrome and MSIE might do it. Other applications usually
don't do this. Is the certificate valid at
all? Invalid local time might cause reports about expired or not yet valid certificates.
SSL interception inside a company will cause to be signed by a proxy CA. Verification will fail if
this CA is not trusted by the application. Verification might even fail in case of SSL
interception if the proxy CA is trusted, because the application uses certificate/public key pinning.
While most browsers ignore the pinning if the certificate is signed by a CA which was explicitly added
by the user, pinning using EMET on Windows might not make this exception. The needed
Root-CA might be known on the system, but maybe not in the trust store used
by the specific application. no shared ciphers Check support
ciphers by client and server. Typical problems are Misconfiguration because all SSL 3.0 ciphers got
removed. Server uses old ciphers which are no
longer supported by client, or the other way. No certificates are configured at the server,
which then falls back to anonymous authentication. These ciphers are not supported by most clients
for security reasons (MITM). unknown protocol <Ii>This happens
if the peer does not speak TLS at all, typically by attempting TLS against port 80 (non-TLS), by trying
to access an SMTP server neeeding explicit TLS (STARTTLS) using implicit TLS or by accessing a badly
configured server which provides plain http instead of https on port 443. This can also
happen if server and client have no protocol versions in common. SSL handshake
timed out, ,want read” <lIli>This can be some bad middlebox like here. Retry from another network,
with different TLS versions or less ciphers. Or it might be that the peer does not speak TLS
at all and just waits for more data. ,connection closed” or ,,connection reset by
peer” or ,handshake failure“or ,error 40“ or ,,SSL_connect SYSCALL ...“ Might be lot of different
things, like SChannel (Microsoft) peers often do not send a TLS alert back on errors, but
simply close connection. In this case it would be helpful to check at the peer side for error
messages. Peer might have crashed and thus connection got closed. The problem
has been seen when client uses SNI but server has no configuration for the provided name
(misconfiguration server or DNS). The problem has been seen when client does not use SNI
but server requires SNI (bad server, should send alert back). It was seen when the client
provided an unexpected certificate, or provided no certificate even if server requested one.
0r some other broken client.

Qgelm - https://schnipsl.qgelm.de/

https://maulwuff.de/research/ssl-debugging.html#no_san%23
https://support.cloudflare.com/hc/en-us/articles/203274000-Does-CloudFlare-s-free-Universal-SSL-have-limitations
https://support.cloudflare.com/hc/en-us/articles/203274000-Does-CloudFlare-s-free-Universal-SSL-have-limitations
https://maulwuff.de/research/ssl-debugging.html#no_sni
https://maulwuff.de/research/ssl-debugging.html#howto_check_chain
https://maulwuff.de/research/ssl-debugging.html#bad_certificates
https://maulwuff.de/research/ssl-debugging.html#pinning
https://maulwuff.de/research/ssl-debugging.html#where_is_my_trust_store
https://maulwuff.de/research/ssl-debugging.html#no_ssl3_ciphers
https://maulwuff.de/research/ssl-debugging.html#bad_ciphers
https://maulwuff.de/research/ssl-debugging.html#f5
https://maulwuff.de/research/ssl-debugging.html#AntiSpamProxy

Last
update:
2021/12/06
15:24

wallabag:typical-problems-and-how-to-debug-them https://schnipsl.qgelm.de/doku.php?id=wallabag:typical-problems-and-how-to-debug-them

Server requires SNI and will even fail with handshake if SNI is not used. See here for how to
check for SNI. elliptic curve routines:EC_GROUP_new_by curve_name:unknown
group If ECC is used (like with ECDHE ciphers) the client needs to announce the supported
ECC curves. If it does not announce any the server is free to pick any curve, which then might not be
available on the client. See here for more
information. bad record mac <Ili>This might be someone tampering with
the traffic. But more likely it is some old and broken server like HP ILO2.
fails because of OCSP problem Unfortunatly OCSP responders sometimes return bad,
expired or no responses, which makes reliance on OCSP a problem. Also, some web servers provide
expired OCSP responses with OCSP stapling. This usually happens only if one enforced strict
OCSP checking, e.g. by setting ,security.OCSP.require” in Firefox. Workaround: disable strict
OCSP checking. But this degrades security. tlsv1 alert decode error
Client probably sends improper messages, like a zero-length server name
extension. | got a mail about my application, referencing VU#582497 Your
application has broken certificate validation. You probably did this because you got
certificate problems while testing you saw some post online on how to ,fix“ your problem by
disabling verification you just used the code you've found there without understanding the
implications Now you have to fix your code, by just remove any custom
validation you have done if you get errors now use the correct certificates at the peer
alternativly use <a href=,https://maulwuff.de/research/ssl-
debugging.html#pinning“>certificate/public key pinning
<h2>When it worked before, works with other applications, servers ...</h2> it worked
before the browser got upgraded <a

href=, https://blog.mozilla.org/security/2014/09/08/phasing-out-certificates-with-1024-bit-rsa-keys/*
target=,_blank“>Firefox removed some RSA 1024 Root-CA's recently, other browsers still have
them. Some certificates might affected by this and should be replaced. More and more
browser disable SSL 3.0 by default. it worked before the local system got
upgraded Programming languages like Python, PHP, Ruby, Perl and probably others moved
or in the process of moving to proper verification of TLS by default. Proper validation was also added
to other tools. This will affect code which implicitly expected no verification. Fix your code to expect
proper verification. Disable verification only if these are just test scripts which don't work with
sensitive data. Curl disables RC4 ciphers by default with version 7.35.0. Sites which don't
support better ciphers will no longer work. Workaround: RC4 support is still there, but <a
href=,,http://stackoverflow.com/questions/25372549/ubuntu-curl-openssl-handshake-failure-with-fritzb
0x/25387211#25387211" target=,_blank“>has to be explicitly enabled. Perl
LWP::UserAgent moved from Crypt::SSLeay to 10::Socket::SSL as SSL back end and thus checks
certificates much more rigourous. This might cause problems when no or lazy validation was
expected. It might also give problems when proxy is in use. In this case an upgrade to 6.06 for both
LWP::UserAgent and LWP::Protocol::https is needed. it worked before the server
configuration changed The server might require SNi
now, but client might not
support SNI. The server might no longer support the

https://schnipsl.qgelm.de/ Printed on 2025/07/01 11:46

https://maulwuff.de/research/ssl-debugging.html#howto_check_sni
https://maulwuff.de/research/ssl-debugging.html#unknown_ec_group
https://maulwuff.de/research/ssl-debugging.html#hpilo2
https://maulwuff.de/research/ssl-debugging.html#empty_sni
http://www.kb.cert.org/vuls/id/582497
https://maulwuff.de/research/ssl-debugging.html#pinning
https://maulwuff.de/research/ssl-debugging.html#pinning
https://blog.mozilla.org/security/2014/09/08/phasing-out-certificates-with-1024-bit-rsa-keys/
http://stackoverflow.com/questions/25372549/ubuntu-curl-openssl-handshake-failure-with-fritzbox/25387211#25387211
http://stackoverflow.com/questions/25372549/ubuntu-curl-openssl-handshake-failure-with-fritzbox/25387211#25387211
https://maulwuff.de/research/ssl-debugging.html#howto_check_sni
https://maulwuff.de/research/ssl-debugging.html#no_sni
https://maulwuff.de/research/ssl-debugging.html#howto_check_ciphers_protocol

2025/07/01 11:46 9/10 Typical problems and how to debug them

protocol or ciphers used by the client. This affects especially clients on old platforms or clients
with hard-coded protocol versions or ciphers. Typical examples are disabling of SSL 3.0 because of
POODLE or disabling RC4 ciphers. Also some servers disabled all SSL 3.0
ciphers in a flawed attempt be save against POODLE. The server might have changed
the certificate and forgot to send the new chain certificates. it worked yesterday,
last week.... <Ili>Then probably some of the events described above happened. 0r the
certificate of the server expired (or the local time is wrong and it looks only expired).
it works in desktop browsers but not on Android/iOS/script/other application. Then it is
probably either an <a href=,,https://maulwuff.de/research/ssl-
debugging.html#missing_chain“>incomplete certificate chain. Or the server requires SNI
but your app does not
support it. Also, desktop browsers retry the connection with a lower protocol version on
most errors, while other application mostly don't automatically downgrade. it
works on the same computer at home If the problem shows up as invalid certificate:
If you are in a company then SSL interception is probably done for security reason. In this
case the certificate is signed by your company or some firewall vendor and not by the original CA. You
need to import the relevant CA into your browser as trusted if you want to accept the
interception. Sometimes such interception is also done for the initial connection (to a
landing page) at some WLAN hotspots. If (TCP) connection fails: there is probably
some firewall which blocks the connection. These might be for TCP connections on specific ports so
that all traffic on this port fails, but it might also be restricted to only selected target hosts.
 it works on other similar systems Even if two systems have the same OS and
upgrades they might behave differently: Additional trusted Root-CAs might be installed on
the system where the connection is successful. The failing system might have disabled
protocols like SSL 3.0 or <a
href=,,http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation
-to-disable-rc4.aspx” target=,_blank“>disabled ciphers like RC4, while the other system did not.
These settings might by system wide or browser specific. it works in
other browsers The browsers differ in Root-CA's,
supported ciphers and protocols. See here for how to
solve the problem by the error message or symptom. The browsers might also have
different network settings, i.e. which proxy gets used. It works on some systems
but not on others, sometimes works on similar systems sometimes not Check if all these
systems and application access the same server IP. I've seen problems where the server had several
IP's for the same hostname but with different configurations, like different between IPv4 and
IPv6. Some setups show erratic behavior, which might be cause be a load balancer with
several systems behind, where some of the systems have a different configuration from the rest.
 <h2>It still does not work</h2> Check for the symptoms and error
messages at stackoverflow. If
nothing helpful is found ask a
new question there. But, don't forget to provide as much
information as possible to get a useful response. </html>

Qgelm - https://schnipsl.qgelm.de/

https://maulwuff.de/research/ssl-debugging.html#no_ssl3_ciphers
https://maulwuff.de/research/ssl-debugging.html#missing_chain
https://maulwuff.de/research/ssl-debugging.html#missing_chain
https://maulwuff.de/research/ssl-debugging.html#howto_check_sni
https://maulwuff.de/research/ssl-debugging.html#no_sni
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
https://maulwuff.de/research/ssl-debugging.html#where_is_my_trust_store
https://maulwuff.de/research/ssl-debugging.html#solve_by_symptom
http://stackoverflow.com
http://stackoverflow.com/questions/ask
https://maulwuff.de/research/ssl-debugging.html#aid_external_debugging

Last
update:
2021/12/06
15:24

wallabag:typical-problems-and-how-to-debug-them https://schnipsl.qgelm.de/doku.php?id=wallabag:typical-problems-and-how-to-debug-them

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link: F
https://schnipsl.qgelm.de/doku.php?id=wallabag:typical-problems-and-how-to-debug-them j

Last update: 2021/12/06 15:24

https://schnipsl.qgelm.de/ Printed on 2025/07/01 11:46

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:typical-problems-and-how-to-debug-them

	[Typical problems and how to debug them]
	Typical problems and how to debug them

