
2025/06/29 15:23 1/4 Linux Fu: Bash Strings

Qgelm - https://schnipsl.qgelm.de/

Linux Fu: Bash Strings

Originalartikel

Backup

<html> <p>If you are a traditional programmer, using

bash

for scripting may seem limiting sometimes, but for certain tasks,

bash

can be very productive. It turns out, some of the limits of

bash

are really limits of older shells and people code to that to be compatible. Still other perceived issues
are because some of the advanced functions in

bash

are arcane or confusing.</p><p>Strings are a good example. You don’t think of

bash

as a string manipulation language, but it has many powerful ways to handle strings. In fact, it may
have too many ways, since the functionality winds up in more than one place. Of course, you can also
call out to programs, and sometimes it is just easier to make a call to an

awk

or Python script to do the heavy lifting.</p><p>But let’s stick with

bash

-isms for handling strings. Obviously, you can put a string in an environment variable and pull it back
out. I am going to assume you know how string interpolation and quoting works. In other words, this
should make sense:</p><pre class=„brush: bash; title: ; notranslate“ title=„“>echo „Your path is
$PATH and the current directory is ${PWD}“</pre><h2>The Long and the Short</h2><p>Suppose
you want to know the length of a string. That’s a pretty basic string operation. In

bash

, you can write

${#var}

https://hackaday.com/2022/01/26/linux-fu-bash-strings/
https://www.qgelm.de/wb2html/wbb1181.html

Last update: 2025/06/27
11:17 wallabag:wb2linux-fu_-bash-strings https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-bash-strings

https://schnipsl.qgelm.de/ Printed on 2025/06/29 15:23

to find the length of

$var

:</p><pre class=„brush: bash; title: ; notranslate“ title=„“>#/bin/bashecho -n „Project Name? „read
PNAMEif 1)then echo Error: Project name longer than 16 characterselse echo ${PNAME} it
is!fi</pre><p>The “2)do let LAST_SLASH=$LAST_SLASH+$SLASH # point at next slash
SLASH=$(expr index „${FFN:$LAST_SLASH}“ /) # look for anotherdone# now LAST_SLASH points to
last slashecho -n „Directory: „expr substr „$FFN“ 1 $LAST_SLASHecho -or-echo
${FFN:0:$LAST_SLASH}# Yes, I know about dirname but this is an example</pre><p>Enter a full
path (like

/foo/bar/hackaday

) and the script will find the last slash and print the name up to and including the last slash using two
different methods. This script makes use of

expr

but also uses the syntax for

bash

‘s built in substring extraction which starts at index zero. For example, if the variable FOO
contains “Hackaday”:</p>${FOO} -> Hackaday${FOO:1} ->
ackaday${FOO:5:3} -> day<p>The first number is an offset and the second is
a length if it is positive. You can also make either of the numbers negative, although you need a
space after the colon if the offset is negative. The last character of the string is at index -1, for
example. A negative length is shorthand for an absolute position from the end of the string.
So:</p>${FOO: -3} -> day${FOO:1:-4} -> ack${FOO: -8:-4} ->
Hack<p>Of course, either or both numbers could be variables, as you can see in the
example.</p><h2>Less is More</h2><p>Sometimes you don’t want to find something, you
just want to get rid of it.

bash

has lots of ways to remove substrings using fixed strings or glob-based pattern matching. There are
four variations. One pair of deletions remove the longest and shortest possible substrings from the
front of the string and the other pair does the same thing from the back of the string. Consider
this:</p><pre class=„brush: bash; title: ; notranslate“ title=““>TSTR=my.first.file.txtecho
${TSTR%.*} # prints my.first.fileecho ${TSTR%%.*} # prints myecho ${TSTR#*fi} # prints
rst.file.txtecho $TSTR##*fi} # prints le.txt</pre><h2>Transformation</h2><p>Of course,
sometimes you don’t want to delete, as much as you want to replace some string with
another string. You can use a single slash to replace the first instance of a search string or two
slashes to replace globally. You can also fail to provide a replacement string and you’ll get
another way to delete parts of strings. One other trick is to add a # or % to anchor the match to the
start or end of the string, just like with a deletion.</p><pre class=„brush: bash; title: ; notranslate“
title=““>TSTR=my.first.file.txtecho ${TSTR/fi/Fi} # my.First.file.txtecho ${TSTRfi/Fi} #
my.First.File.txtecho ${TSTR/#*./PREFIX-} # PREFIX-txt (note: always longest match)echo
${TSTR/%.*/.backup} # my.backup (note: always longest

2025/06/29 15:23 3/4 Linux Fu: Bash Strings

Qgelm - https://schnipsl.qgelm.de/

match)</pre><h2>Miscellaneous</h2><p>Some of the more common ways to manipulate strings
in <code>bash</code> have to do with dealing with parameters. Suppose you have a script that
expects a variable called <code>OTERM</code> to be set but you want to be sure:</p><pre
class=„brush: bash; title: ; notranslate“ title=„“>REALTERM=${OTERM:-vt100}</pre><p>Now
<code>REALTERM</code> will have the value of <code>OTERM</code> or the string
“vt100” if there was nothing in <code>OTERM</code>. Sometimes you want to set
<code>OTERM</code> itself so while you could assign to <code>OTERM</code> instead of
<code>REALTERM</code>, there is an easier way. Use := instead of the :- sequence. If you do that,
you don’t necessarily need an assignment at all, although you can use one if you
like:</p><pre class=„brush: bash; title: ; notranslate“ title=„“>echo ${OTERM:=vt100} # now
OTERM is vt100 if it was empty before</pre><p>You can also reverse the sense so that you replace
the value only if the main value is not empty, although that’s not as generally
useful:</p><pre class=„brush: bash; title: ; notranslate“ title=„“>echo ${DEBUG:+„Debug mode is
ON“} # reverse -; no assignment</pre><p>A more drastic measure lets you print an error message
to stderr and abort a non-interactive shell:</p><pre class=„brush: bash; title: ; notranslate“
title=„“>REALTERM=${OTERM:?„Error. Please set OTERM before calling this script“}</pre><h2>Just
in Case</h2><p>Converting things to upper or lower case is fairly simple. You can provide a glob
pattern that matches a single character. If you omit it, it is the same as ?, which matches any
character. You can elect to change all the matching characters or just attempt to match the first
character. Here are the obligatory examples:</p><pre class=„brush: bash; title: ; notranslate“
title=„“>NAME=„joe Hackaday“echo ${NAME^} # prints Joe Hackaday (first match of any
character)echo ${NAME^^} # prints JOE HACKADAY (all of any character)echo ${NAME^^[a]} #
prints joe HAckAdAy (all a characters)echo ${NAME,,] # prints joe hackaday (all characters)echo
${NAME,] # prints joe Hackaday (first character matched and didn't convert)NAME=„Joe
Hackaday“echo ${NAME,,[A-H]} # prints Joe hackaday (apply pattern to all characters and convert A-
H to lowercase)</pre><p>Recent versions of <code>bash</code> can also convert upper and lower
case using <code>${VAR@U}</code> and <code>${VAR@L}</code> along with just the first
character using <code>@u</code> and <code>@l</code>, but your mileage may
vary.</p><h2>Pass the Test</h2><p>You probably realize that when you do a standard test, that
actually calls a program:</p><pre class=„brush: bash; title: ; notranslate“ title=„“>if [$f -eq 0]then
…</pre><p>If you do an ls on <code>/usr/bin</code>, you’ll see an executable actually
named “[” used as a shorthand for the test program. However, <code>bash</code>
has its own test in the form of two brackets:</p><pre class=„brush: bash; title: ; notranslate“
title=„“>if $f == 0then …</pre><p>That test built-in can handle regular expressions using =~ so
that’s another option for matching strings:</p><pre class=„brush: bash; title: ; notranslate“
title=„“>if "$NAME" =~ [hH]a.k …</pre><h2>Choose Wisely</h2><p>Of course, if you are doing a
slew of text processing, maybe you don’t need to be using <code>bash</code>. Even if you
are, don’t forget you can always leverage other programs like tr, <code>awk</code>,
<code>sed</code>, and many others to do things like this. Sure, performance won’t be as
good — probably — but if you are worried about performance why are you writing a
script?</p><p>Unless you just swear off scripting altogether, it is nice to have some of these tricks
in your back pocket. Use them wisely.</p> </html>

1)

${#PNAME} > 16
2)

” forms an arithmetic context which is why you can get away with an unquoted greater-than
sign here. If you don’t mind using

expr

— which is an external program — there are at least two more ways to get

https://schnipsl.qgelm.de/doku.php?id=wallabag:f_0
https://schnipsl.qgelm.de/doku.php?id=wallabag:name_hh_a.k

Last update: 2025/06/27
11:17 wallabag:wb2linux-fu_-bash-strings https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-bash-strings

https://schnipsl.qgelm.de/ Printed on 2025/06/29 15:23

there:</p><pre class=„brush: bash; title: ; notranslate“ title=““>echo ${#STR}expr length
„${STR}„expr match „${STR}“ '.*'</pre><p>Of course, if you allow yourself to call outside of

bash

, you could use

awk

or anything else to do this, too, but we’ll stick with

expr

as it is relatively lightweight.</p><h2>Swiss Army Knife</h2><p>In fact,

expr

can do a lot of string manipulations in addition to length and match. You can pull a substring from a
string using

substr

. It is often handy to use

index

to find a particular character in the string first. The

expr

program uses 1 as the first character of the string. So, for example:</p><pre class=„brush: bash;
title: ; notranslate“ title=““>#/bin/bashecho -n „Full path? „read FFNLAST_SLASH=0SLASH=$(expr
index „$FFN“ /) # find first slashwhile (($SLASH != 0

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-bash-strings

Last update: 2025/06/27 11:17

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-bash-strings

	[Linux Fu: Bash Strings]
	Linux Fu: Bash Strings

