2025/06/30 01:39 1/5 Linux Fu: Fusing Hackaday

Linux Fu: Fusing Hackaday

Originalartikel
Backup

<html> <p>Unix and, by extension, Linux, has a mantra to make everything possible look like a file.
Files, of course, look like files. But also devices, network sockets, and even system information show
up as things that appear to be files. There are plenty of advantages to doing that since you can use all
the nice tools like

grep
and
find

to work with files. However, making your own programs expose a filesystem can be hard. Filesystem
code traditionally works at the kernel module level, where mistakes can wipe out lots of things and
debugging is difficult. However, there is FUSE — the file system in user space library —
that allows you to write more or less ordinary code and expose anything you want as a file system.
You’ve probably seen FUSE used to mount, say, remote drives via ssh or Dropbox.
We’ve even looked at FUSE before, even for
Windows.</p><p>What’s missing, naturally, is the Hackaday RSS feed, mountable as a
normal file. And that’s what we’re building today.</p><p><img data-
attachment-id=,519698“
data-permalink=,,https://hackaday.com/2022/02/16/linux-fu-fusing-hackaday/mount-2/“ data-orig-
file=, https://hackaday.com/wp-content/uploads/2022/02/mount.png*“ data-orig-size=,982,702" data-
comments-opened=,1“ data-image-
meta=,{"aperture":"0","credit": " ", "camera"
:"","caption":" ","created _timestampé":"0",&q
uot;copyright":" ","focal_length":"0","iso":"0
","shutter_speed":"0", "title":" ", "orientation&
quot;:"0" }“ data-image-title=,,mount” data-image-description=,“ data-image-caption=,*
data-medium-file=,,https://hackaday.com/wp-content/uploads/2022/02/mount.png?w=400" data-
large-file=, https://hackaday.com/wp-content/uploads/2022/02/mount.png?w=800" class=,,alignright
wp-image-519698 size-medium*
src=,https://hackaday.com/wp-content/uploads/2022/02/mount.png?w=400" alt=,“ width=,400"
height=,286" srcset=,https://hackaday.com/wp-content/uploads/2022/02/mount.png 982w,
https://hackaday.com/wp-content/uploads/2022/02/mount.png?resize=250,179 250w,
https://hackaday.com/wp-content/uploads/2022/02/mount.png?resize=400,286 400w,
https://hackaday.com/wp-content/uploads/2022/02/mount.png?resize=800,572 800w"
referrerpolicy=, no-referrer” />Writing a FUSE filesystem isn’t that hard, but there are a
lot of tedious jobs. You essentially have to provide callbacks that FUSE uses to do things when the
operating system asks for them. Open a file, read a file, list a directory, etc. The problem is that for
some simple projects, you don’t care about half of these things, but you still have to provide
them.</p><p>Luckily, there are libraries that can make it a lot easier. [’m going to show you
a simple C++ program that can mount your favorite RSS feed (assuming your favorite one is

Qgelm - https://schnipsl.qgelm.de/

https://hackaday.com/2022/02/16/linux-fu-fusing-hackaday/
https://www.qgelm.de/wb2html/wbb1175.html
https://hackaday.com/2021/08/31/linux-fu-user-space-file-systems-now-for-windows-too/
https://hackaday.com/wp-content/uploads/2022/02/mount.png
https://hackaday.com/2022/02/16/linux-fu-fusing-hackaday/mount-2/
https://hackaday.com/wp-content/uploads/2022/02/mount.png
https://hackaday.com/wp-content/uploads/2022/02/mount.png?w=400
https://hackaday.com/wp-content/uploads/2022/02/mount.png?w=800
https://hackaday.com/wp-content/uploads/2022/02/mount.png?w=400
https://hackaday.com/wp-content/uploads/2022/02/mount.png
https://hackaday.com/wp-content/uploads/2022/02/mount.png?resize=250,179
https://hackaday.com/wp-content/uploads/2022/02/mount.png?resize=400,286
https://hackaday.com/wp-content/uploads/2022/02/mount.png?resize=800,572

Last update:

2025/06/27 11:17 wallabag:wb2linux-fu_-fusing-hackaday https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-fusing-hackaday

Hackaday, of course) as a file system. Granted, that’s not amazing, but it is kind of neat to be
able to grep through the front page stories from the command line or view the last few articles using
Dolphin.</p><h2>Pick a Library</h2><p>There are plenty of libraries and wrappers around FUSE. |
picked one by [jachappell] over on <a href=,https://github.com/jachappell/Fusepp*

target=, blank“>GitHub. It was pretty simple and hides just enough of FUSE to be handy, but
not so much as to be a problem. All the code is hidden around in

Fuse.h

.</p><p>0ne thing to note is that the library assumes you are using
libfuse

3.0. If you don’t already have it, you’ll have to install the
libfuse

3.0 development package from your package manager. There are other choices of libraries, of course,
and you could just write to the underlying

libfuse

implementation, but a good library can make it much simpler to get started.</p><p>Just to keep
things simple, | forked the original
project on GitHub and added a fusehad
directory.</p><h2>Constraints</h2><p>To keep things simple, | decided not to worry about
performance too much. Since the data is traveling over the network, | do attempt to cache it, and |
don’t refresh data later. Of course, you can’t write to the filesystem at all. This is
purely for reading Hackaday.</p><p>These constraints make things easier. Of course, if you were
writing your own filesystem, you might relax some of these, but it still helps to get something as
simple as possible working first.</p><h2>Making it Work First</h2><p>Speaking of which, the first
order of business is to be able to read the Hackaday RSS feed and pull out the parts we need. Again,
not worrying about performance, | decided to do that with a pipe and calling out to

curl

. Yes, that’s cheating, but it works just fine, and that’s why we have tools in the first
place.</p><p>The

HaDFS. cpp

file has a few functions related to FUSE and some helper functions, too. However, | wanted to focus on
getting the RSS feed working so | put the related code into a function | made up called

userinit

. | found out the hard way that naming it

https://schnipsl.qgelm.de/ Printed on 2025/06/30 01:39

https://github.com/jachappell/Fusepp
https://github.com/wd5gnr/Fusepp
https://github.com/wd5gnr/Fusepp/tree/master/fusehad

2025/06/30 01:39 3/5 Linux Fu: Fusing Hackaday

init

would conflict with the library.</p><p>The normal FUSE system processes your command line
arguments — a good thing, as you’ll see soon. So the main in

HaD. cpp

is really simple:</p><pre class=,brush: cpp; title: ; notranslate” title=,"“>#include
<stdio.h> #include ,,HaDFS.h"int main(int argc, char *argv[]){ HaDFS fs; if (fs.userinit()) {
fprintf(stderr,,Can't fetch feed\n“); return 99; }; int status; status= fs.run(argc, argv); return
status;} </pre><p>However, for now, | simply commented out the line that calls

fs.run

. That left me with a simple program that just calls

userinit

.</p><p>Reading the feed isn’t that hard since I’m conscripting
curl

. Each topic is in a structure and there is an array of these structures. If you try to load too many
stories, the code just quietly discards the excess (see

MAXTOPIC
). The
topics

global variable tells how many stories we’ve actually loaded.</p><pre class=,brush: cpp;
title: ; notranslate” title=,“> The curl line to read our feedstatic char cmd[]=, curl
https://hackaday.com/feed/ 2>/dev/null | egrep '(<title>;)|(<link>)'“; User
initialization-read the feed (note that init is reserved by the FUSE library)int HaDFS::userinit(void){
FILE *fp; char buf[1024]; working buffer for reading strings if (!(fp = popen(cmad,,r”))) return 1; open
pipe while (fgets(buf,sizeof(buf),fp)) { string line = buf; line = trimrss(line); trim off extra stuff if (
line.substr(0,7) ==, <title>”) identify line type and process { topic[topics].title = line.substr(7);
topic[topics].title += ,.html“; } else if (line.substr(0,6)==,,&It;link>”) { topic[topics].url =
line.substr(6); topics++; if (topics == MAXTOPIC) break; quietly truncate a long feed } } pclose(fp);
return 0;} </pre><p>The <code>popen</code> function runs a command line and gives us the
<code>stdout</code> stream as a bunch of lines. Processing the lines is just brute force looking for
<title> and <link> to identify the data we need. I filtered <code>curl</code> through
<code>grep</code> to make sure | didn’t get a lot of extra lines, by the way, and | assumed
lowercase, but a <code>-i</code> option could easily fix that. The redirect is to prevent
<code>curl</code> from polluting <code>stderr</code>, although normally FUSE will disconnect
the output streams so it doesn’t really matter. Note that | add an HTML extension to each
fake file name so opening one is more likely to get to the browser.</p><p>By putting a
<code>printf</code> in the code | was able to make sure the feed fetching was working the way |
expected. Note that | don’t fetch the actual pages until later in the process. For now, | just

Qgelm - https://schnipsl.qgelm.de/

https://hackaday.com/feed/

Last update:

2025/06/27 11:17 wallabag:wb2linux-fu_-fusing-hackaday https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-fusing-hackaday

want the titles and the URL links.</p><h2>The Four Functions</h2><p>There are four functions we
need to create in a subclass to get a minimal read-only filesystem going: <code>getattr</code>,
<code>readdir</code>, <code>open</code>, and <code>read</code>. These functions pretty
much do what you expect. ,; The <code>getattr</code> call will return 755 for our root (and
only) directory and 444 for any other file that exists. The <code>readdir</code> outputs entries for .
and .. along with our “files.”, <code>0Open</code> and <code>read</code> do just
what you think they do.</p><p>There are some other functions, but those are ones | added to help
myself:</p><code>userinit</code> – Called to kick off the file system
data<code>trimrss</code> – Trim an RSS line to make it easier to
parse<code>pathfind</code> – Turn a file name into a descriptor (an index into the
array of topics)<code>readurl</code> – Return a string with the contents of a URL
(uses curl)<p>There’s not much to it. You’ll see in the code that there are
a few things to look out for like catching someone trying to write to a file since that isn’t
allowed.</p><h2>Debugging and Command Line Options</h2><p>O0f course, it doesn’t
matter how simple it is, it isn’t going to work the first time is it? Of course, first, you have to
remember to put the call to <code>fs.run</code> back in the main function. But, of course, things
won’t work like you expect for any of a number of reasons. There are a few things to
remember as you go about running and debugging.</p><p>When you build your executable, you
simply run it and provide a command line argument to specify the mount point which, of course,
should exist. | have a habit of using <code>/tmp/mnt</code> while debugging, but it can be
anywhere you have permissions.</p><p>Under normal operation, FUSE detaches your program so
you can’t just kill it. You&k#8217;ll need to use unmount command (<code>fusermount -
u</code>) with the mount point as an argument. Even if your program dies with a segment fault,
you’1l need to use the unmount command or you will probably get the dreaded
“disconnected endpoint” error message.</p><p>Being detached leads to a problem.
If you put <code>printf</code> statements in your code, they will never show up after detachment.
For this reason, FUSE understands the <code>-f</code> flag which tells the system to keep your
filesystem running in the foreground. Then you can see messages and a clean exit, like a Control+C,
will cleanly unmount the filesystem. You can also use <code>-d</code> which enables some built-in
debugging and implies <code>-f</code>. The <code>-s</code> flag turns off threading which can
make debugging easier, or harder if you are dealing with a thread-related problem.</p><p>You can
use <code>gdb</code>, and there are some <a

href=, https://blog.jeffli.me/blog/2014/08/30/use-gdb-to-understand-fuse-file-system/”

target=, _blank“>good articles about that. But for such a simple piece of code, it isn’t
really necessary.</p><h2>What’s Next?</h2><p>The documentation for the library is
almost nothing. However, the library closely mirrors the <code>libfuse</code> API so the
documentation for that (mostly in <a

href=, http://libfuse.github.io/doxygen/fuse-3_810_84_2include_2fuse_8h.html*

target=, blank“>fuse.h) will help you go further. If you want to graduate from FUSE to a
“real” file system, you have a long road. The video below gives some background on
Linux VFS, but that’s just the start down that path.</p><p><iframe class=, youtube-player
cl1” width=,800" height=,480“

src=, https://www.youtube.com/embed/|4qWNNISdJk?version=3&rel=1&,;showsearch=0&am
p;showinfo=1&iv_load_policy=1&fs=1&hl=en-
US&autohide=2&,wmode=transparent” allowfullscreen=, allowfullscreen” sandbox=,,allow-
scripts allow-same-origin allow-popups allow-presentation“>[embedded
content]</iframe></p><p>Maybe stick to FUSE for a while. If you prefer Python, no problem. FUSE
is very popular for mapping cloud storage into your

https://schnipsl.qgelm.de/ Printed on 2025/06/30 01:39

https://blog.jeffli.me/blog/2014/08/30/use-gdb-to-understand-fuse-file-system/
http://libfuse.github.io/doxygen/fuse-3_810_84_2include_2fuse_8h.html
https://www.youtube.com/embed/J4qWNNISdJk?version=3&rel=1&showsearch=0&showinfo=1&iv_load_policy=1&fs=1&hl=en-US&autohide=2&wmode=transparent
https://www.youtube.com/embed/J4qWNNISdJk?version=3&rel=1&showsearch=0&showinfo=1&iv_load_policy=1&fs=1&hl=en-US&autohide=2&wmode=transparent
https://www.youtube.com/embed/J4qWNNISdJk?version=3&rel=1&showsearch=0&showinfo=1&iv_load_policy=1&fs=1&hl=en-US&autohide=2&wmode=transparent
https://hackaday.com/2013/11/06/writing-a-fuse-filesystem-in-python/
https://hackaday.com/2020/11/10/linux-fu-send-in-the-cloud-clones/

2025/06/30 01:39 5/5 Linux Fu: Fusing Hackaday

filesystem, but with your own coding, you could just as easily expose your Arduino or anything
else your computer can communicate with.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:

Last update: 2025/06/27 11:17

Qgelm - https://schnipsl.qgelm.de/

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-fusing-hackaday

	[Linux Fu: Fusing Hackaday]
	Linux Fu: Fusing Hackaday

