2025/06/30 01:39 1/6 Linux Fu: Globs Vs Regexp

Linux Fu: Globs Vs Regexp

Originalartikel
Backup

<html|> <p>I once asked a software developer at work how many times we called fork() in our code.
I1’Il admit, it was a very large project, but | expected the answer to be — at most
— two digits. The developer came back and read off some number from a piece of paper that
was in the millions. | told them there was no way we had millions of calls to fork() and, of course, we
didn’t. The problem was the developer wasn’t clear on the difference between a
regular expression and a glob.</p><p>Tools like grep use regular expressions to create search
patterns. | might write

[Hhlack ?a ?[Dd]ay
as a regular expression to match things like “HackaDay” and “Hack a
day” and, even, “Hackaday” using a tool like grep, awk, or many
programming languages.</p><h2>So What’s a Glob?</h2><p>The problem is the shell also
uses pattern matching and uses many of the same characters as regular expressions. The fork call?
The pattern the developer used was

fork*

. This would be OK — maybe not great — as a glob if you were afraid there were calls
that started with

fork

but then had something else following (like an
exec

call which might be

execl

execv

, or one of several others).</p><p>If the shell saw that pattern it would look for anything that started
with

fork

and then had zero or more characters following it. But as a regular expression, the meaning is quite
different. The pattern actually meant: the letters

Qgelm - https://schnipsl.qgelm.de/

https://hackaday.com/2021/10/07/linux-fu-globs-vs-regexp/
https://www.qgelm.de/wb2html/wbb1237.html

Ii?)sét;;gg/azt;:ll-n wallabag:wb2linux-fu_-globs-vs-regexp https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-globs-vs-regexp

for

followed by zero or more occurrences of the letter
k

. S0

for

would match. So would

fork

. As would

forkkkkk

. Also things like

forth

format
,and
formula

. So the matching number was enormous.</p><h2>Glob Survival Guide</h2><p>Globbing is
typically a function of the shell. When you enter something like:</p><pre>Is a*</pre><p>The Is
program never sees the

a*

. Instead, it sees the shell’s expanded list of files that start with the letter a. Well,
that’s not exactly true. If there are no files that match the glob pattern, then Is will see the
text you entered and will probably print an error message that it can’t find

a*

. At least, this is the default behavior. You can modify what the shell does if it can’t find a
match (lookup

nullglob

and

https://schnipsl.qgelm.de/ Printed on 2025/06/30 01:39

2025/06/30 01:39 3/6 Linux Fu: Globs Vs Regexp

failglob

).</p><p>This is a good thing because it means programs don’t have to write their own
globbing and it all works the same inside a single shell. There may be differences, of course,
depending on the shell you use. You can, also, turn off globbing in some shells. In bash, you can
issue:</p><pre>set -f</pre><p>You’ll probably find that frustrating, though, so undo it
with:</p><pre>set +f</pre><p>The most common special characters for globs are:</p>*
– zero or more characters? – any character[] – A class of
characters like [abc] or [0-9]<Ii>["] – Negative class of characters[!] –
Same as ["]<p>If you have filenames that have a year in them like

post07-26-2020.txt

, you might write the following globs:</p><Ili>post*2020.txt – All posts from
2020post*2027?.txt All posts from 2020-2029 (or, even, 202Z; any character will
match)post0[345]*2020.txt – All posts from March, April, and May of
2020post[!0][01]*.2021.txt – Posts from October or November
2021<p>You can do a lot with a glob, but you can’t really do everything. Bash has
other expansion options that can help, but those aren’t technically globs. For example, you
could enter:</p><pre>process post{01,02,03,11,12}-*2020.txt</pre><p>However, that will
expand, no matter if the files exist or not, to:</p><pre>post01-¥2020.txt post02-¥2020.txt post03-
*2020.txt post11-*2020.txt post12-*2020.txt</pre><p>Then the shell will glob those patterns for
actual file names. You can learn a lot more on the bash man page. Search for pattern
matching.</p><figure id=,attachment_499084" aria-describedby=, caption-attachment-499084“
class=,wp-caption aligncenter c1“><img data-attachment-id=,499084"
data-permalink=,,https://hackaday.com/2021/10/07/linux-fu-globs-vs-regexp/manl/“ data-orig-
file=,https://hackaday.com/wp-content/uploads/2021/09/manl.png” data-orig-size=,1189,594" data-
comments-opened=,1“ data-image-

meta=, {"aperture":"0","credit": " ","camera"
:" ","caption": " ", "created_timestamp":"0",&q
uot;copyright":" ","focal_length":"0","iso":"0
","shutter_speed":"0", "title":" ", "orientation&
quot;:"0" }“ data-image-title=,manl” data-image-description=," data-image-
caption=,<p> The bash man page has a lot on pattern matching</p>“ data-medium-

file=, https://hackaday.com/wp-content/uploads/2021/09/manl.png?w=400"
data-large-file=,https://hackaday.com/wp-content/uploads/2021/09/manl.png?w=800" class=,size-
medium wp-image-499084“
src=,https://hackaday.com/wp-content/uploads/2021/09/manl.png?w=400" alt=,Screen shot of man
bash” width=,400" height=,200"

srcset=, https://hackaday.com/wp-content/uploads/2021/09/manl.png 1189w,
https://hackaday.com/wp-content/uploads/2021/09/manl.png?resize=250,125 250w,
https://hackaday.com/wp-content/uploads/2021/09/manl.png?resize=400,200 400w,
https://hackaday.com/wp-content/uploads/2021/09/manl.png?resize=800,400 800w"
referrerpolicy=,no-referrer” /><figcaption id=, caption-attachment-499084"“ class=,wp-caption-
text“>The bash man page has a lot on pattern matching</figcaption></figure><h2>A Little Regex
Syntax</h2><p>Regular expressions are much more expressive, but also more variable. Every
program that offers regular expressions uses its own code and, in some cases, it is significantly
different than other programs. The good news is that the majority of regular expressions you want to
use won’t be different. Usually, it is only the more obscure features that change, although
that is little comfort if you hit one of those features.</p><p>The basic syntax is probably best
represented by grep. However, if you are using something else you’ll need to check its

Qgelm - https://schnipsl.qgelm.de/

https://hackaday.com/2021/10/07/linux-fu-globs-vs-regexp/man1/
https://hackaday.com/wp-content/uploads/2021/09/man1.png
https://hackaday.com/wp-content/uploads/2021/09/man1.png?w=400
https://hackaday.com/wp-content/uploads/2021/09/man1.png?w=800
https://hackaday.com/wp-content/uploads/2021/09/man1.png?w=400
https://hackaday.com/wp-content/uploads/2021/09/man1.png
https://hackaday.com/wp-content/uploads/2021/09/man1.png?resize=250,125
https://hackaday.com/wp-content/uploads/2021/09/man1.png?resize=400,200
https://hackaday.com/wp-content/uploads/2021/09/man1.png?resize=800,400

Last update:

2025/06/27 11:17 wallabag:wb2linux-fu_-globs-vs-regexp https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-globs-vs-regexp

documentation to see how its regular expressions might be different.</p><p>The biggest problem is
that the

and

characters have completely different meanings from their glob counterparts. The

*

means zero or more of the previous pattern. So
10*

will match

10

100

1000

and so on.</p><figure id=,attachment 499088" aria-describedby=, caption-attachment-499088“
class=, wp-caption alignright c2“><img data-attachment-id=,499088"
data-permalink=,https://hackaday.com/2021/10/07/linux-fu-globs-vs-regexp/regexp/“ data-orig-
file=, https://hackaday.com/wp-content/uploads/2021/09/regexp.png” data-orig-size=,378,91" data-
comments-opened=, 1" data-image-
meta=,{"aperture":"0","credit": " ", &gquot;camera"
:" ","caption":"","created timestampé":"0",&q
uot;copyright":" ","focal_length":"0","iso":"0
","shutter_speed":"0", "title":" ", "orientation&
quot;:"0" }“ data-image-title=,regexp” data-image-description=,“ data-image-
caption=,<p>Our subject regexp represented graphically thanks to Regexper</p>” data-
medium-file=,, https://hackaday.com/wp-content/uploads/2021/09/regexp.png?w=378" data-large-
file=,https://hackaday.com/wp-content/uploads/2021/09/regexp.png?w=378" class=,size-medium
wp-image-499088"“ src=,,https://hackaday.com/wp-content/uploads/2021/09/regexp.png?w=378"
alt=,,Reqgular Expression diagram* width=,378“ height=,91"

srcset=, https://hackaday.com/wp-content/uploads/2021/09/regexp.png 378w,

https://schnipsl.qgelm.de/ Printed on 2025/06/30 01:39

https://hackaday.com/2021/10/07/linux-fu-globs-vs-regexp/regexp/
https://hackaday.com/wp-content/uploads/2021/09/regexp.png
https://hackaday.com/wp-content/uploads/2021/09/regexp.png?w=378
https://hackaday.com/wp-content/uploads/2021/09/regexp.png?w=378
https://hackaday.com/wp-content/uploads/2021/09/regexp.png?w=378
https://hackaday.com/wp-content/uploads/2021/09/regexp.png

2025/06/30 01:39 5/6 Linux Fu: Globs Vs Regexp

https://hackaday.com/wp-content/uploads/2021/09/regexp.png?resize=250,60 250w*"
referrerpolicy=,no-referrer” /><figcaption id=, caption-attachment-499088*“ class=,wp-caption-
text“>O0ur subject regexp represented graphically thanks to <a href=,,https://regexper.com”
target=,_blank"“>Regexper</figcaption></figure><p>The question mark means the previous
pattern is optional. So,

1075

will match
105

and

15

equally well. For any character, in a regular expression, you use a period. So, going back to my
original example,

[Hh]lack ?a ?[Dd]ay

you can see how this is not meaningful as a glob. The <a href=,,https://regexper.com”
target=,_blank“>Regexpr website does a nice job of graphically interpreting regular
expressions, as you can see.</p><h2>Even More Confusion</h2><p>To make matters even more
strange, starting with version 3, bash offers regular expressions in scripting so you could have a script
with both globs and regular expressions that are both going to bash.</p><p>Then there’s
the fact that bash offers a <a
href=,,https://www.gnu.org/software/bash/manual/bash.html|#Pattern-Matching*“
target=,_blank“>different style of glob you can turn on with

shopt -s extglob

. These are actually closer to regular expressions, although the syntax is a bit
reversed.</p><h2>Learning Regular Expressions</h2><p>I| had thought about offering you a cheat
sheet of common regular expressions, but then | realized | couldn’t do better than Dave Child
so | decided <a href=,,https://cheatography.com/davechild/cheat-sheets/regular-expressions/*
target=, blank“>I’d just point you to that.</p><p>Regular expressions have a
reputation for being difficult, and that reputation is not wholly undeserved. But we&+#8217;ve looked
at ways to make regular expressions more literate,
and if you need practice, try <a

href=, https://hackaday.com/2016/01/31/crosswords-help-you-learn-regular-
expressions/“>crosswords.</p> </html>

Qgelm - https://schnipsl.qgelm.de/

https://hackaday.com/wp-content/uploads/2021/09/regexp.png?resize=250,60
https://regexper.com
https://regexper.com
https://www.gnu.org/software/bash/manual/bash.html#Pattern-Matching
https://cheatography.com/davechild/cheat-sheets/regular-expressions/
https://hackaday.com/2020/09/11/linux-fu-literate-regular-expressions/
https://hackaday.com/2016/01/31/crosswords-help-you-learn-regular-expressions/
https://hackaday.com/2016/01/31/crosswords-help-you-learn-regular-expressions/

Last update:

2025/06/27 11:17 wallabag:wb2linux-fu_-globs-vs-regexp https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-globs-vs-regexp

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-globs-vs-re

gexp

Last update: 2025/06/27 11:17

https://schnipsl.qgelm.de/ Printed on 2025/06/30 01:39

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-globs-vs-regexp
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-globs-vs-regexp

	[Linux Fu: Globs Vs Regexp]
	Linux Fu: Globs Vs Regexp

