2025/06/30 20:36 1/3 Linux Fu: Walk, Chew Gum

Linux Fu: Walk, Chew Gum

Originalartikel
Backup

<html> <p>If you ever think about it, computers are exceedingly stupid. Even the most powerful
CPU can’t do very much. However, it can do what it does very rapidly and repeatably.
Computers are so fast, they can appear to do a lot of things at once, too and modern computers have
multiple CPUs to further enhance their multitasking abilities. However, we often don’t write
programs or shell scripts to take advantage of this. However, there’s no reason for this, as
you’ll see.</p><h2>Bash Support</h2><p>lt is surprisingly easy to get multiple processes
running under Bash. For one thing, processes on either side of a pipe run together, and that’s
probably the most common way shell scripts using multiprogramming. In other words, think about
what happens if you write

ls | more

.</p><p>Under the old MSDOS system, the first program would run to completion, spooling its
output to a temporary file. Then the second program will run, reading input from the same file. With
Linux and most other modern operating systems, both programs will run together with the input of
the second program connected to the first program’s output.</p><p>That’s easy
because the programs synchronize themselves over the input and output channel. However, it is just
as easy to start multiple programs independently. The key is using “&” to
separate programs or end the script line.</p><p>lt is easy enough to convert a script like:</p><pre
class=,brush: bash; title: ; notranslate” title=,“>find /mntl/usr -name "*.s0' >/tmp/libs1find
/mnt2/usr -name "*.s0' > /tmp/libs2# tofind /mntl/usr -name '*.so0' >/tmp/libsl &find
/mnt2/usr -name "*.s0' > /tmp/libs2 &</pre><p>In the first case, the searches occur one at a
time, and only proceeds after the last find has run. In the second case, both commands run at the
same time and the script will continue even while both commands are still going.</p><h2>The
Problem</h2><p>There’s only one problem. While you can spin off multiple programs to run
together, it is rare that these programs don’t need to coordinate with each
other.</p><p>Not that it would be useful to really run these in parallel, but take a look at the output
of this command:</p><pre class=,brush: bash; title: ; notranslate” title=,“>alw@Enterprise:~$
banner hello & banner goodbye[1] 173# # ###### # # ##HH#HHH## HH#SH #HH# #H##H
HHAHBH H B HBHHBHH B HH B HBHH B HBHH R H SR BHBRHSHS HBHHSE B H B HEH
HHBHHHBHAHBH B HHBHHB B H B H B HHBHH B H B HH B HBHHBH B H B HSE R HH
HHBHHHRHBHEH BHHRHY BHHBRHY BHBRHY BHBRHHRH FHHH BHEH HBHHY HHSHH #
######[1]+ Done banner hello</pre><p>Not what you expected. Depending on your system, the
first program may (or may not) get all of its output done in one go. Interspersing output isn’t
really what you want.</p><h2>Control</h2><p>There are other problems. You might want to find
out the PID of the new process. You could use <a
href=,,https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.htm|*
target=,_blank“>bash’s job control. However, you don’t really need to go that
far.</p><p>The

jobs

command will show you what you have running in the background from the current shell. If you add

Qgelm - https://schnipsl.qgelm.de/

https://hackaday.com/2021/08/16/linux-fu-walk-chew-gum/
https://www.qgelm.de/wb2html/wbb1253.html
https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

Last update:

2025/06/27 11:17 wallabag:wb2linux-fu_-walk_-chew-gum https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-walk_-chew-gum

-1
or

-p
you can also learn the PID.</p><p>An easier way to learn the PID of a command is using

$!

. Of course, if you are running from the shell’s command prompt, it also tells you the PID of
the last run command. For example:</p><pre class=,brush: bash; title: ; notranslate” title=,“>Is /
& echo PID=$![2] 178PID=178</pre><p>0f course, your PID number will almost certainly be

different.</p><h2>Then What?</h2><p>Armed the PID, what can you do with it? There are two
things you’ll find most useful. First, you can use

wailt

to understand when a process (or processes) are complete.</p><p>The other thing you can do is
use

kill
to send signals to the
background program. That’s beyond the scope of this post, but you can use signals to create

complex communication between programs or to invoke default behaviors like
termination.</p><h2>An Example</h2><p>Consider a case where you have a bunch of

jpeg
files and you want to convert them to

png

files for a website using

ImageMagick

. You might try this simple script:</p><pre class=,brush: bash; title: ; notranslate”
title=,“>#!/bin/bashfor | in *.jpgdo convert ,$I“ ,png/$(basename ,$1“ .jpg).png“doneecho Copying
files now...Is png</pre><p>This will do the job. Presumably, the last line will have some file copy
command like an

sftp

following it, but | used a directory listing just for an example.</p><p>Instead, you could launch all
the conversions at once, taking advantage of multiple processors, and wait for them all to finish up.

Without the wait command, the simulated copy would start before the conversions were complete
unless there were very few conversions to do.</p><pre class=,brush: bash; title: ; notranslate”

https://schnipsl.qgelm.de/ Printed on 2025/06/30 20:36

https://hackaday.com/2019/08/26/linux-fu-its-a-trap/

2025/06/30 20:36 3/3 Linux Fu: Walk, Chew Gum

title=,“>#!/bin/bashfor | in *.jpgdo convert ,$I“ ,png/$(basename ,$I“ .jpg).png"“
&donewaitecho Copying files now...Is png</pre><h2>Still a Problem</h2><p>There is still one
problem. The wait command will wait for any subprocesses active in the shell. That might not be what
you want, although in this case, it is probably OK. However, let’s fix it:</p><pre
class=,brush: bash; title: ; notranslate” title=,“>#!/bin/bashPIDs=,,,for | in *.jpgdo convert , $1“
~png/$(basename ,$1“ .jpg).png” &PIDs+=,$! ,donewait $PIDsecho Copying files...Is
png</pre><p=>If you run the timing with a good number of files, you’ll see a big difference.
On my laptop with a handful of pictures, the straight versions took about 40 seconds. It took just over
10 seconds with the final version.</p><h2>Wrap Up</h2><p>It is easy to forget that you can do
more than one thing at a time pretty easily. Of course, this also opens up a whole new realm of
problems. If you need to protect your programs from each other, check out our <a
href=,,https://hackaday.com/2020/08/18/linux-fu-one-at-a-time-please-critical-sections-in-bash-
scripts/“>earlier post about critical sections. Not everyone thinks

bash

is a great programming language, but it is surprisingly capable
and while it might not be good for everything, it is great for some tasks.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-walk _-chew-gum

Last update: 2025/06/27 11:17

Qgelm - https://schnipsl.qgelm.de/

https://hackaday.com/2020/08/18/linux-fu-one-at-a-time-please-critical-sections-in-bash-scripts/
https://hackaday.com/2020/08/18/linux-fu-one-at-a-time-please-critical-sections-in-bash-scripts/
https://hackaday.com/2017/07/21/linux-fu-better-bash-scripting/
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2linux-fu_-walk_-chew-gum

	[Linux Fu: Walk, Chew Gum]
	Linux Fu: Walk, Chew Gum

