2025/07/09 03:25 1/5 Peeking Inside Executables And Libraries To Make Debugging Easier

Peeking Inside Executables And Libraries To Make
Debugging Easier

Originalartikel
Backup

<html> <p>At first glance, both the executables that a compiler produces, and the libraries that are
used during the building process seem like they&#8217;re not very accessible. They are these black
boxes that make an application go, or make the linker happy when you hand it the
&#8216;right&#8217; library file. There is also a lot to be said for not digging too deeply into either,
as normally things will Just Work&#8482; without having to bother with such additional
details.</p><p>The thing is that both executables and libraries contain a lot of information that
normally is just used by the OS, toolchain, debuggers and similar tools. Whether these files are in
Windows PE format, old-school Linux

a.out
or modern-day
.elf

, when things go south during development, sometimes one has to break out the right tools to inspect
them in order to make sense of what is happening.</p><p>This article will focus primarily on the
Linux platform, though most of it also applies to BSD and MacOS, and to some extent
Windows.</p><h2>0pening the Black Box</h2><p><img data-attachment-id=,414852" data-
permalink=,,https://hackaday.com/2020/05/28/peeking-inside-executables-and-libraries-to-make-debu
gging-easier/elf-layout-basic-themed/

data-orig-file=, https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png” data-
orig-size=,789,840" data-comments-opened=,1" data-image-

meta=, {&quot;aperture&quot;:&quot;0&quot;,&quot;credit&quot;: &quot; &quot;,&quot;camera&quot;
:&quot; &quot;,&quot;caption&quot;: &quot; &quot;,&quot;created_timestamp&quot;:&quot;0&quot;,&q
uot;copyright&quot;:&quot;&quot;,&quot;focal_length&quot;:&quot;0&quot;,&quot;iso&quot;:&quot;0
&quot;,&quot;shutter speed&quot;:&quot;0&quot;, &quot;title&quot;:&quot; &quot;,&quot;orientation&
quot;:&quot;0&quot; }“ data-image-title=,elf-layout-basic-themed” data-image-description=,“ data-
image-caption=,,"“

data-

medium-file=,,https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-
themed.png?w=376"

data-

large-file=, https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?w=587"
class=,alignright wp-image-414852 size-medium*
src=,https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?w=376" alt=,,“
width=,376" height=,400"

srcset=, https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png 789w,
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?resize=235,250
235w,
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?resize=376,400
376w,

Qgelm - https://schnipsl.qgelm.de/


https://hackaday.com/2020/05/28/peeking-inside-executables-and-libraries-to-make-debugging-easier/
https://www.qgelm.de/wb2html/wbb1191.html
https://hackaday.com/2020/05/28/peeking-inside-executables-and-libraries-to-make-debugging-easier/elf-layout-basic-themed/
https://hackaday.com/2020/05/28/peeking-inside-executables-and-libraries-to-make-debugging-easier/elf-layout-basic-themed/
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?w=376
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?w=376
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?w=587
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?w=376
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?resize=235,250
https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?resize=376,400

Last
update:
2025/06/27
11:17

wallabag:wb2peeking-inside-executables-and-libraries-to-make-debugging-easier https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2peeking-inside-executables-and-libraries-to-make-debugging-easier

https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?resize=587,625
587w" referrerpolicy=,no-referrer” /></p><p>Regardless of which platform you&#8217;re on,
executable and library formats all have a number of common sections. There is of course the section
with the actual instructions, as well as the section with all of the text strings and constant values that
we put in the code before we compiled it. If we instructed the compiler to generate debug symbols
and told the linker to leave those in place, we also have the debug symbols included in its own
section. We will look at those later in this article.</p><p>In the <a

href=, https://en.wikipedia.org/wiki/Executable_and_Linkable_Format" target=,_blank“>ELF</a>
(Executable and Linkable Format) that is commonly used on Linux and many other operating systems,
the rough layout follows this diagram. Not all of these sections are required, and their inclusion
depends on what options were selected when the executable file was created.</p><p>A quick
overview of an executable file&#8217;s properties can be obtained with the <a
href=,https://linux.die.net/man/1/file” target=,_blank“>file</a> utility:</p><pre class=,code”>ELF
32-bit LSB shared object, Intel 80386, version 1 (GNU/Linux), dynamically linked, interpreter /lib/Id-
linux.so0.2, for GNU/Linux 3.2.0, BuildID[shal]=0558c7ef0f6845826d012b4ccc14948a2ffe8277,
stripped</pre><p>This output tells us that we&#8217;re dealing with a 32-bit binary, compiled for
the x86 architecture, which uses a number of shared libraries, and which has had its debug symbols
stripped.</p><p>If debug symbols are still present, we get:</p><pre class=,code"“>ELF 32-bit LSB
shared object, Intel 80386, version 1 (GNU/Linux), dynamically linked, interpreter /lib/ld-linux.so0.2, for
GNU/Linux 3.2.0, BuildID[shal]=0558c7ef0f6845826d012b4ccc14948a2ffe8277, with debug_info, not
stripped</pre><p=>In this particular case, we are dealing with a binary that was compiled on
Raspbian Buster for x86, which is a 32-bit version of Linux, so that all matches.</p><p>For a
Windows executable file we get the following, less expansive output:</p><pre class=,code”“>PE32+
executable (GUI) x86-64, for MS Windows</pre><p>This tells us that we are dealing with a PE
(Windows) executable, compiled for the 64-bit x86-64 architecture.</p><p>As one may have
guessed at this point, libraries, both dynamic and shared, use the <a
href=,https://en.wikipedia.org/wiki/Comparison_of executable_file formats” target=,_blank“>same
format</a> as the executables, so for example examining an

. SO

shared library file on Linux would generate almost the same output when we use the <em>file</em>
command.</p><h2>Sharing Responsibly</h2><p>Unique to (desktop) operating systems is the
ability to load dynamic (shared) libraries when the application is started. Here the assumption is made
that the required libraries are present on the host system, and in the search path for the library
loader (an OS component). Libraries can also be versioned to indicate different revisions. This usually
happens via the filename, with the generic name (e.g.

libfoo.so

) <a href=,https://linux.die.net/man/1/In“ target=,_blank“>symlinked</a> to the actual file (
libfo0.50.0.1

). If there&#8217;s a mismatch with the version, this can result in a symbol error, which we&#8217;ll
look at in the next section.</p><p>When an executable uses shared library files, it is easy to check
which direct dependencies (encoded in the executable file) it uses, by checking the executable with

the <a href=,https://linux.die.net/man/1/ldd“ target=, _blank“>ldd</a> utility, which has a gotcha
that it does not work well with the older

https://schnipsl.qgelm.de/ Printed on 2025/07/09 03:25


https://hackaday.com/wp-content/uploads/2020/05/elf-layout-basic-themed.png?resize=587,625
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://linux.die.net/man/1/file
https://en.wikipedia.org/wiki/Comparison_of_executable_file_formats
https://linux.die.net/man/1/ln
https://linux.die.net/man/1/ldd

2025/07/09 03:25 3/5 Peeking Inside Executables And Libraries To Make Debugging Easier

a.out

format. This isn&#8217;t really an issue with modern day development on Windows, Linux/BSD, and
MacOS, which use the PE (PE32+), ELF and Mach-O formats, respectively. For embedded development
(e.g. ARM Cortex-M) the ELF format is also used as an intermediary format before generating the
binary image.</p><h2>Listing Dependencies</h2><p>The basic output from

ldd

shows where direct dependencies are found on the filesystem, and which dependencies are not
found. For example, this is the (heavily) abbreviated output from

1dd
for
ffplay.exe

under MSYS2 on Windows:</p><pre>$ |dd /mingw64/bin/ffplay.exe ntdll.dll =&gt;
/c/Windows/SYSTEM32/ntdll.dll (0x77780000) kernel32.dll =&gt; /c/Windows/system32/kernel32.dll
(0x77660000) KERNELBASE.dIl =&gt; /c/Windows/system32/KERNELBASE.dII (0x7fefd730000)
msvcrt.dll =&gt; /c/Windows/system32/msvcrt.dll (0x7fefed80000) SHELL32.dIl =&agt;
/c/Windows/system32/SHELL32.dIl (Ox7fefdab0000) SHLWAPI.dIl =&gt;
/c/Windows/system32/SHLWAPIL.dII (Ox7fefdal0000) GDI32.dIl =&gt; /c/Windows/system32/GDI32.dlI
(Ox7feff0e0000) USER32.dIl =&gt; /c/Windows/system32/USER32.dll (0x77560000) LPK.dll =&gt;
/c/Windows/system32/LPK.dIl (0x7fefeb30000) USP10.dIl =&gt; /c/Windows/system32/USP10.dll
(0x7feff6e0000) SDL2.dIl =&gt; /mingw64/bin/SDL2.dll (0x644c0000) [...]</pre><p>Dependencies
shown for the average executable can be pretty massive (the full list is about eight times this length),
but it&#8217;s useful as a quick sanity check to see not only whether a dependency has been
fulfilled, but also whether the application loader has picked the right library. It can happen for
example that a system has two different versions of a library (e.g. in <em>/usr/shared/bin</em> and
<em>/usr/bin</em>), which can lead to the hilarious situation where you spend half a day debugging
different libraries and application versions, rolling back &#8216;known working&#8217; code
versions and losing your sanity.</p><p=>Another thing which a tool like

ldd

shows is at which address the library has been loaded, but that&#8217;s useful only for truly
advanced levels of debugging and optimization.</p><h2>When Symbols Go AWOL</h2><p>Things
get fun when we talk about symbols in the context of executable and library formats. This is not about
debug symbols, which are a completely different topic, but the symbols that are integral to making it
possible for sections of code to be found, whether while executing, or while linking object files and
static libraries together. Missing symbols lead to fun run-time errors as well, where an &#8216;entry
point&#8217; is not found in some shared library.</p><p>A quick way to fix such issues is usually to
ensure that you have the matching versions of the libraries for the code or executable file. Sometimes
this all checks out, and the application loader or linker tool is still giving you lip about missing
symbols, so what gives?</p><p><img data-attachment-id=,218893“

data-
permalink=,,https://hackaday.com/2020/05/28/peeking-inside-executables-and-libraries-to-make-debu
gging-easier/turingtapes/“

Qgelm - https://schnipsl.qgelm.de/


https://hackaday.com/2020/05/28/peeking-inside-executables-and-libraries-to-make-debugging-easier/turingtapes/
https://hackaday.com/2020/05/28/peeking-inside-executables-and-libraries-to-make-debugging-easier/turingtapes/

Last
update:
2025/06/27
11:17

wallabag:wb2peeking-inside-executables-and-libraries-to-make-debugging-easier https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2peeking-inside-executables-and-libraries-to-make-debugging-easier

data-orig-file=, https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg” data-orig-
size=,3000,1815" data-comments-opened=, 1" data-image-
meta=,{&quot;aperture&quot;:&quot;0&quot;,&quot;credit&quot;: &quot; &quot;, &quot;camera&quot;
:&quot;&quot;,&quot;caption&quot;:&quot;&quot;,&quot;created_timestampé&quot;:&quot;0&quot;,&q
uot;copyright&quot;:&quot; &quot;,&quot;focal_length&quot;:&quot;0&quot;,&quot;iso&quot;:&quot; 0
&quot;,&quot;shutter_speed&quot;:&quot;0&quot;,&quot;title&quot;:&quot; &quot;,&quot;orientation&
quot;:&quot;1&quot; }“ data-image-title=,TuringTapes” data-image-description=,"“ data-image-
caption=,,"“

data-medium-file=, https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?w=400" data-
large-file=, https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?w=800"
class=,alignright size-medium wp-image-218893“
src=,https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?w=400" alt=," width=,400"
height=,242" srcset=,https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg 3000w,
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=250,151 250w,
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=400,242 400w,
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=800,484 800w,
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=1536,929 1536w,
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=2048,1239 2048w"
referrerpolicy=,no-referrer” />In the case of linking code, it can be as simple as the wrong linking
order, as toolchains for most languages use an opportunistic linking style that remembers missing
symbols, but does not remember symbols it has already seen. While in languages like Ada this is not
an issue, in C-style languages, determining the linking order in the commands given to the linker tool
is essential.</p><p>Another issue is where a language (like C++) supports overloading functions to
support different arguments and return types, and name mangling is used (to get a unique symbol). If
a header file was compiled in C++ mode, when it&#8217;s supposed to be linked against a library
that was compiled as C code, without name mangling, this would make the linker tool give the
&#8216;missing symbol&#8217; error for those functions.</p><p>In order to figure out whether a
missing symbol is truly missing, improperly mangled, left unmangled or in another library or object
file, one can use a utility like <a href=,,https://linux.die.net/man/1/readelf”

target=, blank“>readelf</a> to check which symbols are actually in the file. Note that (obviously)
readelf only supports ELF-style files. A more generic utility that focuses on just symbols in a variety of
formats is <a href=,,https://linux.die.net/man/1/nm* target=,_blank“>nm</a>. For example, this
output from the <a href=,,https://en.wikipedia.org/wiki/Nm_(Unix)" target=,_blank“>Wikipedia
entry</a> on nm:</p><pre># nm test.00000000a T Z15global_functioni00000025 T
_Z16global_function2v00000004 b ZL10static var00000000 t ZL15static_functionv00000004 d
_ZL15static_var_init00000008 b _ZZ15global_functioniE1l6local_static_var00000008 d
_ZZ15global_functioniE21local_static_var_init U __gxx_personality_v000000000 B global_var00000000
D global_var_init0000003b T main00000036 T non_mangled_function</pre><p>This shows what the
output from nm looks like when a C++ compiler is used. Nm can be instructed to demangle symbols
to make it easier to read if that&#8217;s necessary. Regardless, its output tells us whether a symbol
exists in the file or is undefined (&#8216;U&#8217;). It will also detail where the symbol is defined
(which section) and what type of symbol it is (if relevant). In the above example we see one undefined
symbol (&#8216;U&+#8217;), a couple of text (code) section symbols (&#8216;T&#8217; &amp;
&+#8216;t&#8217;), one symbol in the uninitialized data section (BSS, &#8216;B&#8217; &amp;
&#8216;b&#8217;) and two in the initialized data section (&#8216;D&#8217; &amp;
&#8216;d&#8217;).</p><p>0f these, we&#8217;d just need to hand the linker a library or object
file that contains the one undefined symbol to make this code link and produce an
executable.</p><h2>Last Resort: Tracing Application Startup</h2><p>Annoyingly, sometimes
everything seems in order, yet the application fails to start, or quits half-way through with a
mysterious message. This is where a utility like <a href=,,https://linux.die.net/man/1/strace”

https://schnipsl.qgelm.de/ Printed on 2025/07/09 03:25


https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?w=400
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?w=800
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?w=400
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=250,151
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=400,242
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=800,484
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=1536,929
https://hackaday.com/wp-content/uploads/2016/08/turingtapes.jpg?resize=2048,1239
https://linux.die.net/man/1/readelf
https://linux.die.net/man/1/nm
https://en.wikipedia.org/wiki/Nm_
https://linux.die.net/man/1/strace

2025/07/09 03:25 5/5 Peeking Inside Executables And Libraries To Make Debugging Easier

target=, blank“>strace</a> can be extremely useful, as it traces all system calls involving the
application from the moment that the application starts. Often, the issue with an application not
loading is due to an indirect dependency that cannot be loaded, an environmental setting that is
inappropriate, or a file that was accidentally set to read-only.</p><p>Simply firing up strace with the
application as argument will output a list of the system calls as made by the application, including
errors, such as a missing file:</p><pre>open(,/foo/bar”, O RDONLY) = -1 ENOENT (No such file or
directory)</pre><p>0r a missing library dependency:</p><pre>open(,/usr/lib/libfoo.so”,
O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)</pre><h2>Wrapping
Up</h2><p>O0bviously none of this is the end-all, be-all of debugging the linking and running of
executables, binaries, and an assortment of related issues. As with so many things in life, in the end
it&#8217;s mostly experience that counts. Over time one will develop an intuition for where the
problem likely lies, as well as how to find out the culprit as quickly as possible.</p><p>Having spent
many years in commercial software development and having survived a range of (overly) ambitious
hobby projects, | can definitely say that there is a lot of knowledge that | wish | had had sooner. On
the other hand, the act of discovering why some things were not working and correcting this injustice
against the order of the world was usually rewarding in itself.</p><p>That said, one has to pick their
battles wisely. Sometimes learning things from scratch isn&#8217;t worth it, and leaning on the
knowledge of others is nothing to be ashamed of. Especially when it&#8217;s Friday afternoon and
the client expects delivery of the new version on Monday. Hopefully this article has been helpful in
that regard.</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2peeking-inside-executables-and-libraries-to-make-debugging-easier

Last update: 2025/06/27 11:17

Qgelm - https://schnipsl.qgelm.de/


https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2peeking-inside-executables-and-libraries-to-make-debugging-easier

	[Peeking Inside Executables And Libraries To Make Debugging Easier]
	Peeking Inside Executables And Libraries To Make Debugging Easier


