2025/08/12 20:41 1/6 Versionskontrolle fir Machine-Learning-Projekte

Versionskontrolle fur Machine-Learning-Projekte

Originalartikel
Backup

<html> <p> » <a href=,,https://www.informatik-aktuell.de/betrieb.html*
target=, self“>Betrieb » <a
href=,https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz.html“
target=,_self“>Künstliche Intelligenz</p>Veit Schiele 11. August
2020<header></header><div class=,ce-textpic ce-left ce-intext“><div class=,ce-gallery ce-row ce-
column” data-ce-columns=, 1" data-ce-images=, 1“><figure class=,image“><img class=,image-
embed-item* title=,Mit DVC können Sie sprachunabhängig ML-Pipelines mit den
zugehörigen Trainingsdaten, Konfigurationen, Leistungsmetriken usw. definieren. ©
Adobe: dsdecoret / stock.adobe.com / 211485579" alt=,Mit DVC können Sie
sprachunabhängig ML-Pipelines mit den zugehörigen Trainingsdaten, Konfigurationen,
Leistungsmetriken usw. definieren. © Adobe: dsdecoret / stock.adobe.com / 211485579“
src=,https://www.informatik-aktuell.de/fileadmin/ processed /5/4/csm_720-AdobeStock 211485579 d
dd223b4f7.jpg" width=,350" height=,196" referrerpolicy=,no-referrer” /><figcaption class=,image-
caption“>© Adobe: dsdecoret</figcaption></figure></div><div class=,ce-
bodytext“><p>In diesem Artikel erfahren Sie, wie die Modellentwicklung für
maschinelles Lernen (ML) systematisch organisiert werden kann. So kann die Leistung eines Modells
verbessert werden, wenn die Parameter feiner abgestimmt oder wenn mehr Trainingsdaten
verf&+#252;gbar werden. Um die Verbesserung messen zu können, sollte nachverfolgt werden
können, welche Daten für das Training in welcher Modelldefinition und -konfiguration
(Parameter etc.) verwendet und welche Modellleistungen damit erzielt wurden. Dabei sollten sowohl
die Daten wie auch der zugehörige Programmcode in einer Version erfasst
werden.</p><p>DVC (Data Version Control) wurde entwickelt, um Sie genau
bei dieser Aufgabe zu unterstützen <a
href=,,https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machin
e-learning-projekte.html#c¢32318“>[1]. Durch die Implementierung einer DVC-Pipeline werden
alle Daten geladen, vorverarbeitet, trainiert und die Leistung bewertet, wobei der Vorgang
vollständig reproduzierbar und automatisierbar ist. Trainingsdaten, Modellkonfiguration, das
Modell und Leistungsmetriken sind so versioniert, dass Sie bequem zu einer bestimmten Version
zurückkehren und alle zugehörigen Konfigurationen und Daten überprüfen
können. Außerdem bietet DVC einen Überblick über Metriken für alle
Versionen lhrer Pipeline, mit deren Hilfe Sie die beste Version ermitteln können. Zudem
können Sie die Trainingsdaten, Modelle, Leistungsmetriken usw. mit anderen teilen und eine
effiziente Zusammenarbeit ermöglichen.</p><h2>Warum DVC?</h2>Git-
annex speichert wie DVC große Dateien nicht im Git-Repository selbst, sondern in
einem lokalen Schlüssel-Wert-Speicher und verwendet Hardlinks oder Symlinks, anstatt Dateien
zu duplizieren <a
href=,https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machin
e-learning-projekte.html#c32318“>[2].Git-LFS verwendet Reflinks
oder Hardlinks, um Kopiervorgänge zu vermeiden und so große Dateien effizienter
verarbeiten zu können. DVC ist jedoch kompatibel zu deutlich mehr Remote-Speichern (S3,
Google Cloud, Azure, SSH usw.) <a
href=,https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machin
e-learning-projekte.html#c32318“>[3].Andere Workflow-Management-Systeme wie
MLflow sind meist sehr allgemein und nicht speziell für die Verwaltung von

Qgelm - https://schnipsl.qgelm.de/

https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html
https://www.qgelm.de/wb2html/wbb1130.html
https://www.informatik-aktuell.de/betrieb.html
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz.html
https://www.informatik-aktuell.de/fileadmin/_processed_/5/4/csm_720-AdobeStock_211485579_ddd223b4f7.jpg
https://www.informatik-aktuell.de/fileadmin/_processed_/5/4/csm_720-AdobeStock_211485579_ddd223b4f7.jpg
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318

Last
update:
2025/06/27
11:17

wallabag:wb2versionskontrolle-fur-machine-learning-projekte https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2versionskontrolle-fur-machine-learning-projekte

Daten in ML-Projekten entwickelt worden <a
href=,,https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machin
e-learning-projekte.html#c32318“>[4].<p>DAGsHub ist ein DVC-
Äquivalent, jedoch nur für Github <a
href=,,https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machin
e-learning-projekte.html#c32318“>[5].</p><h2>Ein
Beispielprojekt</h2><p>Dieser Artikel führt Sie durch ein Beispielprojekt mit folgenden
Phasen:</p>Repositories erstellenDatenpipelines
definierenReproduzierenPipeline visualisierenDaten
teilen</div></div><header><h3>1. Repositories erstellen</h3></header><p>1.
Zunächst wird ein Repository mit einer Versionsverwaltung Ihrer Wahl vorbereitet. In unserem
Beispiel ist dies Git, DVC kann jedoch auch mit jeder anderen Versionsverwaltung
zusammenarbeiten.</p><pre>$ git init</pre><p>2. In diesem Repository DVC
initiieren:</p><pre>$ dvc initYou can now commit the changes to git....</pre><p>3. Initiales Git-
Repository einchecken:</p><pre>$ git status neue Datei: .dvc/.gitignore neue Datei: .dvc/config$ git
add .dvc $ git commit -m ,Initial repo“</pre><p>4. Daten mit DVC verwalten:</p><pre>$ mkdir
data$ dvc get https://github.com/iterative/dataset-reqgistry get-started/data.xml \ -o data/data.xml$
dvc add data/data.xml</pre><p>5. Datenänderungen mit Git synchronisieren:</p><pre>$ git
add data/data.xml.dvc data/.gitignore$ git commit -m ,,Add raw data“</pre><p>6. Entfernten
Datenspeicher konfigurieren:</p><p>Sie können DVC-Daten und -Modelle mit dvc
push auch außerhalb Ihres lokalen Caches an einem entfernten Ort speichern, damit sie
später auch in anderen Umgebungen abgerufen werden können. Üblicherweise
sind dies entfernte Cloud-Services (S3, Azure Blob Storage, Google Cloud Storage), aber auch SSH,
HDFS, und HTTP sind möglich. Um das Beispiel möglichst einfach nachvollziehbar zu
halten, wählen wir hier einen lokalen Speicherort:</p><pre>$ sudo mkdir -p /var/dvc-storage$
dvc remote add -d local /var/dvc-storageSetting 'local’ as a default remote.$ git commit .dvc/config -m
~Configure local remote“[master efaeb84] Configure local remote 1 file changed, 4
insertions(+)</pre><p>7. Speichern und teilen:</p><p>Mit dvc push kopieren Sie
Dateien aus Ihrem lokalen DVC-Cache in den zuvor konfigurierten Remote-Storage.</p><pre>$ dvc
push</pre><p>8. Überprüfen:</p><p>Sie können dies überprüfen,
z. B. mit:</p><pre>$ Is -R /var/dvc-storagea3 fl/var/dvc-
storage/a3:04afb96060aad90176268345e10355/var/dvc-
storage/f1:5a7474cd26c014ce0cf7a8a3d50516.dir</pre><p>Beachten Sie, dass beide Versionen der
Daten gespeichert sind und übereinstimmen sollten mit dvc/cache.</p><div
class=, ce-image ce-left ce-above ce-gallery ce-row ce-column“><figure class=,image“><a
href=,https://www.informatik-aktuell.de/fileadmin/templates/wr/pics/Artikel/03 Betrieb/Kl/abbl Versio
nskontrolle_schiele.png” class=,jnlightbox” data-title=, Abb. 1: Repositories erstellen. © Cusy
GmbH, 2020“ rel=,lightbox[1b32386]" data-lightbox=, lightbox-32386“><img class=,image-embed-
item*“ title=,Abb. 1: Repositories erstellen. © Cusy GmbH, 2020" alt=,Abb. 1: Repositories
erstellen. © Cusy GmbH, 2020
src=,https://www.informatik-aktuell.de/fileadmin/ processed /b/3/csm_abbl Versionskontrolle_schiel
e 44c482834d.png” width=,720" height=,350" referrerpolicy=,no-referrer” /><figcaption
class=,image-caption“>Abb. 1: Repositories erstellen. © Cusy GmbH,
2020</figcaption></figure></div><header><h3>2. Datenpipelines
definieren</h3></header><p>Die Versionierung großer Daten für Data Science ist ein
Schritt in die richtige Richtung, aber noch nicht ausreichend, wenn Daten gefiltert, transformiert oder
zum Trainieren von ML-Modellen verwendet werden sollen. Daher erfasst DVC auch die Abfolge der
Prozesse bei der Manipulation der Daten. Damit können die Ergebnisse später genau so
reproduziert werden, wie sie entstanden sind. Für unser Beispiel soll die Pipeline aus den
folgenden fünf Phasen bestehen:</p>VorbereitenAufteilen von Trainings-

https://schnipsl.qgelm.de/ Printed on 2025/08/12 20:41

https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#c32318
https://github.com/iterative/dataset-registry
https://www.informatik-aktuell.de/fileadmin/templates/wr/pics/Artikel/03_Betrieb/KI/abb1_Versionskontrolle_schiele.png
https://www.informatik-aktuell.de/fileadmin/templates/wr/pics/Artikel/03_Betrieb/KI/abb1_Versionskontrolle_schiele.png
https://www.informatik-aktuell.de/fileadmin/_processed_/b/3/csm_abb1_Versionskontrolle_schiele_44c482834d.png
https://www.informatik-aktuell.de/fileadmin/_processed_/b/3/csm_abb1_Versionskontrolle_schiele_44c482834d.png

2025/08/12 20:41 3/6 Versionskontrolle fir Machine-Learning-Projekte

und
TestdatenMerkmalsextraktionTrainierenEvaluieren<p>Das
Ergebnis dieser Pipeline sind die Leistungsmetriken des trainierten Modells. Das gesamte Schema
sieht so aus:</p><p>Rohdaten → aufteilen → Trainings-/Testdaten
→ extrahieren → Features → trainieren →
Modell → evaluieren → Metriken</p><p>2.1.
Vorbereiten: Als Vorbereitung auf die Datenpipeline unseres Beispiels benötigen wir
zunächst eine virtuelle Python-Umgebung:</p><pre>$ python3 -m venv venv$ source
venv/bin/activate$ pip install -r requirements.txt</pre><p>In unserem Beispiel enthält die
requirements.txt-Datei die vier Python-Pakete pandas, sklearn, scikit-learn
und scipy. Beachten Sie jedoch bitte, dass DVC sprachunabhängig und nicht an
Python gebunden ist. Niemand kann Sie davon abhalten, die Phasen in Bash, C oder in einer anderen
Lieblingssprache oder einem anderen Framework wie Spark, PyTorch usw. zu
implementieren.</p><p>2.2. Aufteilen von Trainings- und Testdaten: Mit
dvc run können Sie einzelne Verarbeitungsphasen erstellen, wobei jede Phase
durch eine mit Git verwaltete Quellcode-Datei sowie die Abhängigkeiten und Ausgabedaten
beschrieben wird. Alle Phasen zusammen bilden dann die DVC-Pipeline. Unsere erste Phase soll die
Daten in Trainings- und Testdaten aufteilen:</p><pre>$ dvc run -n split -d src/split.py -d
data/data.xml -o data/splitted \python src/split.py data/data.xml</pre>-n split
gibt den Namen mit der Beschreibung der Verarbeitungsphase an.-d
src/split.py und -d data/data.xml geben die Abhängigkeiten
(dependencies) an. Wenn sich später eine dieser Daten ändert, erkennt
DVC, dass die Ergebnisse neu berechnet werden müssen.-o data/splitted
gibt das Verzeichnis an, in das die Ergebnisse geschrieben werden sollen. In unserem Fall sollte sich
der Arbeitsbereich geändert haben in:<pre> ├── data
│ ├── data.xml │ ├── data.xml.dvc
│ └─,─ splitted+│ ├── test.tsv+│
└── train.tsv+│+├──
dvc.lock+├── dvc.yam| ├── requirements.txt
└── src └── split.py</pre>python
src/split.py data/data.xml ist der Befehl, der in dieser Verarbeitungsphase ausgeführt
wird. Die resultierende dvc.yaml-Datei sieht dann so aus:<pre> stages: split:
cmd: python src/split.py data/data.xml deps: - data/data.xml - src/split.py outs: -
data/splitted</pre><p>In dvc.lock werden hingegen die MD5-Hashwerte gespeichert,
anhand derer DVC erkennen kann, ob Änderungen an den Dateien vorgenommen
wurden:</p><pre> split: cmd: python src/split.py data/data.xml deps: - path: data/data.xml md5:
a304afb96060aad90176268345e10355 - path: src/split.py md5:
ffa32f4104c363040f27d2bd22db127d outs: - path: data/splitted md5:
1ce9051bf386e57c03fe779d476d93e7.dir</pre><p>Da die Daten im Ausgabeverzeichnis nie mit Git
versioniert werden sollten, hat dvc run dies auch bereits in die
data/.gitignore-Datei geschrieben:</p><pre> /data.xml+
/splitted</pre><p>2.3. Merkmalsextraktion</p><p>Die nächste
Verarbeitungsphase können Sie nun erstellen, indem die Ausgabe der vorhergehenden als
Abhängigkeit definiert wird, in unserem Beispiel mit:</p><pre>dvc run -n featurize -d
src/featurization.py -d data/splitted \ -o data/features python src/featurization.py data/splitted
data/features</pre><p>Sie können diese Verarbeitungsphase jedoch auch parametrisieren.
Hierfür erstellen wir in unserem Beispiel die Datei params.yaml mit folgendem
Inhalt:</p><pre> max_features: 6000 ngram_range: lo: 1 hi: 2</pre><p>Der Aufruf fügt dann
dem obigen Befehl noch -p <filename>:<params_list> hinzu:</p><pre>$ dvc
run -n featurize -d src/featurization.py -d data/splitted \ -p
params.yaml:max_features,ngram_range.lo,ngram_range.hi -o data/features \ python

Qgelm - https://schnipsl.qgelm.de/

Last
update:
2025/06/27
11:17

wallabag:wb2versionskontrolle-fur-machine-learning-projekte https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2versionskontrolle-fur-machine-learning-projekte

src/featurization.py data/splitted data/features</pre><p>Die dvc.yaml-Datei wird dann
erg&+#228;nzt um:</p><pre> + featurize: + cmd: python src/featurization.py data/splitted
data/features + deps: + - data/splitted + - src/featurization.py + params: + - max_features + -
ngram_range.lo + - ngram_range.hi + outs: + - data/features</pre><p>Schließlich
müssen noch dvc.lock, dvc.yaml und data/.gitignore
im Git-Repository aktualisiert werden:</p><pre>$ git add dvc.lock dvc.yaml
data/.gitignore</pre><p>Mit dvc params erhalten Sie weitere Informationen zu den
Parametrisierungsoptionen.</p><p>2.4. Trainieren</p><p>Die Trainingsphase
wird erstellt mit:</p><pre>$ dvc run -n train -d src/train.py -d data/features -o model.pkl \ python
src/train.py data/features model.pkl</pre><p>2.5. Evaluieren</p><pre>$ dvc
run -n evaluate -d src/evaluate.py -d model.pkl -d data/features \ -M auc.json python src/evaluate.py
model.pkl data/features auc.json</pre><p>evaluate.py liest Features aus der
features/test.pkl-Datei aus und berechnet den AUC-Wert des Modells. Diese Metrik wird
dann in die auc.json-Datei geschrieben. Wir verwenden die -M-Option, um
die Datei als Metrik in der dvc.yaml-Datei zu markieren:</p><pre> + evaluate: cmd:
python src/evaluate.py model.pkl data/features auc.json + deps: + - data/features + - model.pkl + -
src/evaluate.py + metrics: + - auc.json: + cache: false</pre><p>Die Ergebnisse können Sie
sich anzeigen lassen mit dvc metrics:</p><pre> $ dvc metrics show auc.json:
0.514172</pre><p>Um nun unsere erste Version der DVC-Pipeline abzuschließen,
fügen wir die Dateien und ein Tag dem Git-Repository hinzu:</p><pre> $ git add dvc.yaml
dvc.lock auc.json $ git commit -m 'Add stage ‹evaluate›' $ git tag -a 0.1.0 -m ,Initial
pipeline version 0.1.0“</pre><header><h3>3. Reproduzieren</h3></header><p>Wie Sie
sehen konnten, macht DVC das Erstellen einer Pipeline sehr einfach. Der wirkliche Vorteil ist jedoch,
dass das Reproduzieren der Ergebnisse oder Teilen davon, d. h. das erneute Ausführen von
Stufen ggf. mit geänderten Bedingungen, sehr einfach ist. Hierfür steht Ihnen dvc
repro zur Verfügung:</p><pre> $ dvc repro Verifying data sources in stage:
'data/data.xml.dvc' Stage 'split' didn't change, skipping Stage 'featurize' didn't change, skipping Stage
'train' didn't change, skipping Stage 'evaluate' didn't change, skipping</pre><p>Sie können
nun z. B. Parameter in der params.yaml-Datei ändern und anschließend die
Pipeline erneut durchlaufen:</p><pre>$ dvc reproStage 'data/data.xml.dvc' didn't change,
skippingStage 'split' didn't change, skipping Running stage 'featurize' with command: python
src/featurization.py data/splitted data/features...Stage 'train' didn't change, skippingStage 'evaluate’
didn't change, skippingTo track the changes with git, run: git add dvc.lock</pre><p>In unserem Fall
hatte die Änderung der Parameter also keinen Einfluss auf das Ergebnis. Beachten Sie jedoch,
dass DVC Änderungen an Abhängigkeiten und Ausgaben über MD5-Hashwerte
erkennt, die in der dvc.lock-Datei gespeichert sind.</p><header><h3>4. Pipeline
visualisieren</h3></header><p>Damit sich auch für andere schnell die Struktur der Pipeline
erschließt, kann diese sehr einfach mit dvc dag visualisiert
werden:</p><p>$ dvc dag

+— + | data/data.xml.dvc [

+— +
 *
 +——+ 8 8
| split |
+——+
 *

+———+8 | featurize
| 8
+———+8

 8 8 +——-

https://schnipsl.qgelm.de/ Printed on 2025/08/12 20:41

https://schnipsl.qgelm.de/lib/exe/fetch.php?media=wallabag:dvc.lock

2025/08/12 20:41 5/6 Versionskontrolle fir Machine-Learning-Projekte

+ *| train
| +——-
+ 8 8 8
*
 *
 +———-+ | evaluate |
 +———-+</p><header><h3>5. Daten teilen</h3></header><p>Sie können
nun lhren Code und lhre Trainingsdaten einfach mit anderen Teammitlgiedern teilen. Sofern die
Teammitglieder ebenfalls auf unser lokales DVC-Repository in /var/dvc-storage zugreifen
können, können Sie die Ergebnisse unseres Beispiels reproduzieren mit:</p><pre> $ git
clone https://github.com/veit/dvc-example.git $ cd dvc-example $ dvc pull -TR A data/data.xml 1 file
added $ Is data/ data.xml data.xml.dvc</pre><header><h2>Fazit</h2></header><p>Mit DVC
können Sie sprachunabhängig reproduzierbare ML-Pipelines definieren und zusammen
mit den zugehörigen Trainingsdaten, Konfigurationen, Leistungsmetriken usw. versioniert
speichern. Dabei arbeitet DVC mit allen modernen Versionsverwaltungen zusammen und
unterstützt viele verschiedene Speicherarten wie S3, Google Cloud, Azure, SSH usw. Damit
strukturiert DVC nicht nur die Datenhaltung, sondern durch einzelne, atomare Phasen der DVC-
Pipeline bleiben Änderungen in den Daten auch transparent und nachvollziehbar. Insgesamt
erleichtert und effektiviert dies die Arbeit an ML-Projekten erheblich.</p><div id=,c32318"
class=,frame quellen frame-type-text frame-
layout-0“><header><p>Quellen</p></header><a href=, https://dvc.org/* title=,DVC"
target=,,_blank” rel=,noreferrer>DVC<a href=,https://git-annex.branchable.com/*
title=, git annex” target=,_blank” rel=,noreferrer“>git-annexGit Large File Storage
(LFS) <a href=,https://mlflow.org/“ title=, MLflow" target=,_blank“
rel=,noreferrer“>MLflow<a href=,https://dagshub.com/“ title=, DAGsHub*
target=,,_blank” rel=,noreferrer*>DAGsHub<p>Github: <a
href=,https://github.com/iterative/dvc” title=,DVC" target=,_blank”
rel=,noreferrer”>DVCBeispielprojekt: Github: <a href=,https://github.com/veit/dvc-example”
title=,,dvc-example” target=,_blank" rel=,noreferrer*>dvc-example</p><p><a

href=, https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machin
e-learning-projekte.html#top“><img

src=,, https://www.informatik-aktuell.de/fileadmin/templates/wr/images/LinkToTop.png* width=,50*
height=,50" alt="" referrerpolicy=, no-referrer”
/><[/a></p></div><header><p>Autor</p></header><div class=,tx-pwteaser-pil main odd“><img
src=,https://www.informatik-aktuell.de/fileadmin/_processed /4/0/csm_200-veit-schiele_f5dbffc384.jp
g“ width=,150" height=,150" alt=,“ referrerpolicy=,no-referrer” /><h3>Veit Schiele</h3>Veit
Schiele ist erfahrener Trainer für Analysten, Wissenschaftler und Ingenieure bei der Entwicklung
von Analyse- und Forschungssoftware sowie Autor des Jupyter-Tutorial und des PyViz-Tutorial.<a
href=,,https://www.informatik-aktuell.de/autoren-cv/veit-

schiele.html”>> > Weiterlesen</div><header><p>Das könnte Sie auch
interessieren</p></header><p>Kommentare (0)</p> </html|>

Qgelm - https://schnipsl.qgelm.de/

https://github.com/veit/dvc-example.git
https://dvc.org/
https://git-annex.branchable.com/
https://git-lfs.github.com/
https://mlflow.org/
https://dagshub.com/
https://github.com/iterative/dvc
https://github.com/veit/dvc-example
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#top
https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/versionskontrolle-fuer-machine-learning-projekte.html#top
https://www.informatik-aktuell.de/fileadmin/templates/wr/images/LinkToTop.png
https://www.informatik-aktuell.de/autoren-cv/veit-schiele.html
https://www.informatik-aktuell.de/fileadmin/_processed_/4/0/csm_200-veit-schiele_f5dbffc384.jpg
https://www.informatik-aktuell.de/fileadmin/_processed_/4/0/csm_200-veit-schiele_f5dbffc384.jpg
https://www.informatik-aktuell.de/autoren-cv/veit-schiele.html
https://www.informatik-aktuell.de/autoren-cv/veit-schiele.html
https://www.informatik-aktuell.de/autoren-cv/veit-schiele.html

Last
update:
2025/06/27
11:17

wallabag:wb2versionskontrolle-fur-machine-learning-projekte https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2versionskontrolle-fur-machine-learning-projekte

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link: o
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2versionskontrolle-fur-machine-learning-projekte

Last update: 2025/06/27 11:17

https://schnipsl.qgelm.de/ Printed on 2025/08/12 20:41

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2versionskontrolle-fur-machine-learning-projekte

	[Versionskontrolle für Machine-Learning-Projekte]
	Versionskontrolle für Machine-Learning-Projekte

