
2025/07/12 22:58 1/5 Writing Toy Software Is A Joy

Qgelm - https://schnipsl.qgelm.de/

Writing Toy Software Is A Joy

Originalartikel

Backup

<html> <div class=„row box“><p>Why you should write more toy
programs</p><small>2025-06-15</small></div><div class=„row box“><p>I am a huge fan of
Richard Feyman’s famous quote:</p><blockquote><p>“What I cannot create, I do
not understand”</p></blockquote><p>I think it’s brilliant, and it remains true
across many fields (if you’re willing to be a little creative with the definition of
‘create’). It is to this principle that I believe I owe everything I’m truly good
at. Some will tell you to avoid reinventing the wheel, but they’re wrong: you
should build your own wheel, because it’ll teach you more about how they work
than reading a thousand books on them ever will.</p><p>In 2025, the beauty and craft of writing
software is being eroded. AI is threatening to replace us (or, at least, the most joyful aspects of our
craft) and software development is being increasingly commodified, measured, packaged, and
industrialised. Software development needs more simple joy, and I’ve found that creating toy
programs is a great way to remember why I started working with computers again.</p><h2>Keep it
simple</h2><p>Toy programs follow the 80:20 rule: 20% of the work, 80% of the functionality. The
point is not to build production-worthy software (although it is true that some of the best
production software began life as a toy). Aggressively avoid over-engineering, restrict yourself to only
whatever code is necessary to achieve your goal. Have every code path panic/crash until
you’re forced to implement it to make progress. You might be surprised by just how easy it is
to build toy versions of software you might previously have considered to be insummountably difficult
to create.</p><h2>Other benefits</h2><p>I’ve been consistently surprised by just how
often some arcane nugget of knowledge I’ve acquired when working on a toy project has
turned out to be immensely valuable in my day job, either by giving me a head-start on tracking down
a problem in a tool or library, or by recognising mistakes before they’re
made.</p><p>Understanding the constraints that define the shape of software is vital for working
with it, and there’s no better way to gain insight into those constraints than by running into
them head-first. You might even come up with some novel solutions!</p><h2>The
list</h2><p>Here is a list of toy programs I’ve attempted over the past 15 years, rated by
difficulty and time required. These ratings are estimates and assume that you’re already
comfortable with at least one general-purpose programming language and that, like me, you tend to
only have an hour or two per day free to write code. Also included are some suggested resources that
I found useful.</p><h3>Regex engine (difficulty = 4/10, time = 5 days)</h3><p>A regex engine
that can read a POSIX-style regex program and recognise strings that match it. Regex is simple yet
shockingly expressive, and writing a competent regex engine will teach you everything you need to
know about using the language too.</p>Wikipedia:
Regex<h3>x86 OS kernel (difficulty = 7/10, time = 2 months)</h3><p>A multiboot-
compatible OS kernel with a simple CLI, keyboard/mouse driver, ANSI escape sequence support,
memory manager, scheduler, etc. Additional challenges include writing an in-memory filesystem, user
mode and process isolation, loading ELF executables, and supporting enough video hardware to
render a GUI.</p>OS Dev Wiki<p><img
src=„https://gitlab.com/zesterer/tupai/-/raw/master/doc/images/tupai-0-5-0.png“ alt=„Tupai“
referrerpolicy=„no-referrer“ /></p><h3>GameBoy/NES emulator (difficulty = 6/10, time = 3
weeks)</h3><p>A crude emulator for the simplest GameBoy or NES games. The GB and the NES are

https://blog.jsbarretto.com/post/software-is-joy
https://www.qgelm.de/wb2html/wbb1000.html
https://en.wikipedia.org/wiki/Regular_expression#Syntax
https://wiki.osdev.org/
https://gitlab.com/zesterer/tupai
https://gitlab.com/zesterer/tupai/-/raw/master/doc/images/tupai-0-5-0.png

Last update:
2025/06/27
11:17

wallabag:wb2writing-toy-software-is-a-joy https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2writing-toy-software-is-a-joy

https://schnipsl.qgelm.de/ Printed on 2025/07/12 22:58

classics, and both have relatively simple instruction sets and peripheral hardware. Additional
challenges include writing competent PPU (video) and PSG (audio) implementations, along with
dealing with some of the more exotic cartridge formats.</p>GB
DevNES Dev
Wiki<h3>GameBoy Advance game (difficulty = 3/10, time = 2 weeks)</h3><p>A
sprite-based game (top-down or side-on platform). The GBA is a beautiful little console to write code
for and there’s an active and dedicated development community for the console. I truly
believe that the GBA is one of the last game consoles that can be fully and completely understood by
a single developer, right down to instruction timings.</p>ToncGBATEK<h3>Physics engine (difficulty
= 5/10, time = 1 week)</h3><p>A 2D rigid body physics engine that implements Newtonian physics
with support for rectangles, circles, etc. On the simplest end, just spheres that push away from one-
another is quite simple to implement. Things start to get complex when you introduce more complex
shapes, angular momentum, and the like. Additional challenges include making collision resolution
fast and scaleable, having complex interactions move toward a steady state over time, soft-body
interactions, etc.</p><h3>Dynamic interpreter (difficulty = 4/10, time = 1-2 weeks)</h3><p>A
tree-walking interpreter for a JavaScript-like language with basic flow control. There’s an
unbounded list of extra things to add to this one, but being able to write programs in my own
language still gives me child-like elation. It feels like a sort of techno-genesis: once you’ve got
your own language, you can start building the universe within it.</p>Crafting Interpreters<p><img src=„https://blog.jsbarretto.com/img/forge.webp“
alt=„Forge“ referrerpolicy=„no-referrer“ /></p><h3>Compiler for a C-like (difficulty = 8/10,
time = 3 months)</h3><p>A compiler for a simply-typed C-like programming language with support
for at least one target archtecture. Extra challenges include implementing some of the most common
optimisations (inlining, const folding, loop-invariant code motion, etc.) and designing an intermediate
representation (IR) that’s general enough to support multiple backends.</p><h3>Text editor
(difficulty = 5/10, time = 2-4 weeks)</h3><p>This one has a lot of variability. At the blunt end,
simply reading and writing a file can be done in a few lines of Python. But building something
that’s closer to a daily driver gets more complex. You could choose to implement the UI using
a toolkit like QT or GTK, but I personally favour an editor that works in the console. Properly handling
unicode, syntax highlighting, cursor movement, multi-buffer support, panes/windows, tabs,
search/find functionality, LSP support, etc. can all add between a week or a month to the project. But
if you persist, you might join the elite company of those developers who use an editor of their own
creation.</p><p><img
src=„https://github.com/zesterer/zte/raw/master/misc/screenshot.png“ alt=„ZTE“ referrerpolicy=„no-
referrer“ /></p><h3>Async runtime (difficulty = 6/10, time = 1
week)</h3><p>There’s a lot of language-specific variability as to what
‘async’ actually means. In Rust, at least, this means a library that can ingest

impl Future

tasks and poll them concurrently until completion. Adding support for I/O waking makes for a fun
challenge.</p><h3>Hash map (difficulty = 4/10, time = 3-5 days)</h3><p>Hash maps (or
sets/dictionaries, as a higher-level language might call them) are a programmer’s bread
& butter. And yet, surprisingly few of us understand how they really work under the bonnet.
There are a plethora of techniques to throw into the mix too: closed or open addressing, tombstones,
the robin hood rule, etc. You’ll gain an appreciation for when and why they’re fast,
and also when you should just use a vector + linear search.</p><a

https://gbdev.io
https://www.nesdev.org/wiki/Nesdev_Wiki
https://www.coranac.com/tonc/text/toc.htm
https://problemkaputt.de/gbatek.htm
https://craftinginterpreters.com/
https://github.com/zesterer/forge
https://blog.jsbarretto.com/img/forge.webp
https://github.com/zesterer/zte
https://github.com/zesterer/zte/raw/master/misc/screenshot.png

2025/07/12 22:58 3/5 Writing Toy Software Is A Joy

Qgelm - https://schnipsl.qgelm.de/

href=„https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-i
mplementation/“>Robin Hood Hashing should be your default Hash Table
implementation<h3>Rasteriser / texture-mapper (difficulty = 6/10, time = 2
weeks)</h3><p>Most of us have played with simple 3D graphics at some point, but how many of us
truly understand how the graphics pipeline works and, more to the point, how to fix it when it
doesn’t work? Writing your own software rasteriser will give you that knowledge, along with a
new-found appreciation for the beauty of vector maths and half-spaces that have applications across
many other fields. Additional complexity involves properly implementing clipping, a Z-buffer, N-gon
rasterisation, perspective-correct texture-mapping, Phong or Gouraud shading, shadow-mapping,
etc.</p>Scratch-A-PixelHow OpenGL works:
software rendering in 500 lines of code<p><img
src=„https://github.com/zesterer/euc/raw/master/misc/example.png“ alt=„euc“ referrerpolicy=„no-
referrer“ /></p><h3>SDF Rendering (difficulty = 5/10, time = 3 days)</h3><p>Signed
Distance Fields are a beautifully simple way to render 3D spaces defined through mathematics, and
are perfectly suited to demoscene shaders. With relatively little work you can build yourself a cute
little visualisation or some moving shapes like the graphics demos of the 80s. You’ll also gain
an appreciation for shader languages and vector maths.</p>Inigo Quilez’s SiteShaderToy<p><img
src=„https://blog.jsbarretto.com/img/sdf-shapes.webp“ alt=„Signed Distance Fields“
referrerpolicy=„no-referrer“ /></p><h3>Voxel engine (difficulty = 5/10, time = 2
weeks)</h3><p>I doubt there are many reading this that haven’t played Minecraft.
It’s surprisingly easy to build your own toy voxel engine cut from a similar cloth, especially if
you’ve got some knowledge of 3D graphics or game development already. The simplicity of a
voxel engine, combined with the near-limitless creativity that can be expressed with them, never
ceases to fill me with joy. Additional complexity can be added by tackling textures, more complex
procedural generation, floodfill lighting, collisions, dynamic fluids, sending voxel data over the
network, etc.</p>0
FPS: Meshing in a Minecraft Game<h3>Threaded Virtual Machine (difficulty = 6/10,
time = 1 week)</h3><p>Writing interpreters is great fun. What’s more fun? Faster
interpreters. If you keep pushing interpreters as far as they can go without doing architecture-
specific codegen (like AOT or JIT), you’ll eventually wind up (re)discovering threaded
code (not to be confused with multi-threading, which is a very different beast). It’s a
beautiful way of weaving programs together out highly-optimised miniature programs, and a decent
implementation can even give an AOT compiler a run for its money in the performance
department.</p>Wikipedia:
Threaded codemuforth.dev: Threaded
code<h3>Your Own GUI Toolkit (difficulty = 6/10, time = 2-3 weeks)</h3><p>Most
of us have probably cobbled together a GUI program using tkinter, GTK, QT, or WinForms. But why not
try writing your GUI toolkit? Additional complexity involves implementing a competent layout engine,
good text shaping (inc. unicode support), accessibility support, and more. Fair warning: do not
encourage people to use your tool unless it’s battle-tested - the world has
enough GUIs with little-to-no accessibility or localisation support.</p><p><img
src=„https://github.com/zesterer/gui/raw/master/misc/example.png“ alt=„GUI“ referrerpolicy=„no-
referrer“ /></p><h3>Orbital Mechanics Sim (difficulty = 6/10, time = 1 week)</h3><p>A
simple simulation of Newtonian gravity can be cobbled together in a fairly short time. Infamously,
gravitational systems with more than two bodies cannot be solved analytically, so you’ll have

https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-implementation/
https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-implementation/
https://www.scratchapixel.com/
https://github.com/ssloy/tinyrenderer/wiki/Lesson-0:-getting-started
https://github.com/zesterer/euc
https://github.com/zesterer/euc/raw/master/misc/example.png
https://iquilezles.org/articles/distfunctions/
https://www.shadertoy.com/
https://www.shadertoy.com/view/ftXBWs
https://blog.jsbarretto.com/img/sdf-shapes.webp
https://0fps.net/2012/06/30/meshing-in-a-minecraft-game/
https://en.wikipedia.org/wiki/Threaded_code
https://muforth.dev/threaded-code/
https://github.com/zesterer/gui
https://github.com/zesterer/gui/raw/master/misc/example.png

Last update:
2025/06/27
11:17

wallabag:wb2writing-toy-software-is-a-joy https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2writing-toy-software-is-a-joy

https://schnipsl.qgelm.de/ Printed on 2025/07/12 22:58

to get familiar with iterative integration methods. Additional complexity comes with
implementing more precise and faster integration methods, accounting for relativistic effects, and
writing a visualiser. If you’ve got the maths right, you can even try plugging in real numbers
from NASA to predict the next high tide or full moon.</p>Wikipedia: Leapfrog
integration<h3>Bitwise Challenge (difficulty = 3/10, time = 2-3
days)</h3><p>Here’s one I came up with for myself, but I think it would make for a great
game jam: write a game that only persists 64 bits of state between subsequent frames.
That’s 64 bits for everything: the entire frame-for-frame game state should be reproducible
using only 64 bits of data. It sounds simple, but it forces you to get incredibly creative with your game
state management. Details about the rules can be found on the GitHub page below.</p>The Bitwise
Challenge<p><img
src=„https://blog.jsbarretto.com/img/snake.webp“ alt=„Snake“ referrerpolicy=„no-referrer“
/></p><h3>An ECS Framework (difficulty = 4/10, time = 1-2 weeks)</h3><p>For all those
game devs out there: try building your own ECS framework. It’s not
as hard as you might think (you might have accidentally done it already!). Extra points if you can
build in safety and correctness features, as well as good integration with your programming language
of choice’s type system features.</p><p>I built a custom ECS for my Super Mario 64 on the GBA project due
to the unique performance and memory constraints of the platform, and enjoyed it a
lot.</p><p>youtube_ns5rj80l-pk_gt</p><h3>CHIP-8 Emulator (difficulty = 3/10, time = 3-6
days)</h3><p>The CHIP-8 is a beautifully
simple virtual machine from the 70s. You can write a fully compliant emulator in a day or two, and
there are an enormous plethora of fan-made games that run on it. Here’s a
game I made for it.</p>Wikipedia:
CHIP-8<p><img
src=„https://github.com/zesterer/emul8/raw/master/misc/screenshot.png“ alt=„Emul8“
referrerpolicy=„no-referrer“ /></p><h3>Chess engine (difficulty = 5/10, time = 2-5
days)</h3><p>Writing a chess engine is great fun. You’ll start off with every move it makes
being illegal, but over time it’ll get smart and smarter. Experiencing a loss to your own chess
engine really is a rite of passage, and it feels magical.</p>Wikipedia: MinmaxWikipedia: Alpha-beta
pruning<p><img src=„https://blog.jsbarretto.com/img/chess.webp“ alt=„Chess“
referrerpolicy=„no-referrer“ /></p><h3>POSIX shell (difficulty = 4/10, time = 3-5
days)</h3><p>We interact with shells every day, and building one will teach you can incredible
amount about POSIX - how it works, and how it doesn’t. A simple one can be built in a day,
but compliance with an existing shell language will take time and teach you more than you ever
wanted to know about its quirks.</p>Write a shell in C<p><img
src=„https://raw.githubusercontent.com/zesterer/tosh/master/misc/screen0.png“ alt=„Tosh“
referrerpolicy=„no-referrer“ /></p><h2>A note on learning and LLMs</h2><p>Perhaps
you’re a user of LLMs. I get it, they’re neat tools. They’re useful for certain
kinds of learning. But I might suggest resisting the temptation to use them for projects like this.
Knowledge is not supposed to be fed to you on a plate. If you want that sort of learning, read a book -
the joy in building toy projects like this comes from an exploration of the unknown, without polluting

https://en.wikipedia.org/wiki/Leapfrog_integration
https://github.com/zesterer/the-bitwise-challenge
https://github.com/zesterer/bitwise-examples
https://blog.jsbarretto.com/img/snake.webp
https://en.wikipedia.org/wiki/Entity_component_system
https://www.youtube.com/watch?v=nS5rj80L-pk
https://schnipsl.qgelm.de/lib/exe/fetch.php?media=lt:youtube_ns5rj80l-pk_gt
https://en.wikipedia.org/wiki/CHIP-8
https://github.com/zesterer/emul8/raw/refs/heads/master/test/test.ch8
https://en.wikipedia.org/wiki/CHIP-8
https://github.com/zesterer/emul8
https://github.com/zesterer/emul8/raw/master/misc/screenshot.png
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://blog.jsbarretto.com/img/chess.webp
https://brennan.io/2015/01/16/write-a-shell-in-c/
https://github.com/zesterer/tosh
https://raw.githubusercontent.com/zesterer/tosh/master/misc/screen0.png

2025/07/12 22:58 5/5 Writing Toy Software Is A Joy

Qgelm - https://schnipsl.qgelm.de/

one’s mind with an existing solution. If you’ve been using LLMs for a while, this cold-
turkey approach might even be painful at first, but persist. There is no joy without pain.</p><p>The
runner’s high doesn’t come to those that take the bus.</p></div> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2writing-toy-software-is-a-joy

Last update: 2025/06/27 11:17

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2writing-toy-software-is-a-joy

	[Writing Toy Software Is A Joy]
	Writing Toy Software Is A Joy

