2025/08/03 12:08 1/4 Zwolf Regeln fir Web- und Cloud-Anwendungen

Zwolf Regeln fur Web- und Cloud-Anwendungen

Originalartikel
Backup

<html> <time datetime=,2020-11-17T13:51:00+01:00“>17.11.2020 13:51</time>Golo
Roden<p><strong class=,manuell vorspann“>Das Entwickeln skalierbarer und verlässlicher
Anwendungen für Web und Cloud ist ein komplexes Thema, das eine gewisse Erfahrung fordert.
Dennoch gibt es Leitplanken für den einfachen Einstieg, allen voran die Regeln der 12-Factor-
Apps. Was hat es mit damit auf sich?</p><p>Für die Entwicklung von Web- und
Cloud-Anwendungen gibt es verschiedene Architekturtypen. Doch je größer und
komplexer eine Anwendung wird, desto eher werden Aspekte wie Skalierbarkeit,
Hochverfügbarkeit und Ausfallsicherheit relevant. Diese Anforderungen lassen sich allerdings
nicht mit einer monolithischen Architektur umsetzen, weshalb man bei solchen Anwendungen
häufig auf ein Netz aus verteilten Diensten stößt, die einander
ergänzen.</p><p>Damit ein derartiges Netz funktionieren kann, sind an die einzelnen Dienste
gewisse Anforderungen zu stellen. Beispielsweise ist für eine elastische Skalierbarkeit
unabdingbar, dass sich Dienste je nach Bedarf starten und auch beenden lassen, ohne dafür in
größerem Rahmen Zeit einplanen zu müssen. Das wiederum bedingt gewisse
Herangehensweisen an die Entwicklung solcher Dienste.</p><p>Da verteilte Architektur an sich kein
einfaches Thema ist, fällt auch der Einstieg häufig schwer. Um diesem Problem
entgegenzuwirken und einen einfachen Einstieg in die Thematik zu ermöglichen, hat der Cloud-
Plattform-Anbieter Heroku schon vor etlichen Jahren zwöIf Regeln verfasst, die als Leitplanken
für den Entwurf und die Entwicklung von Diensten gelten können.
Selbstverständlich umfasst verteilte Architektur weitaus mehr als diese zwö1f Regeln,
aber sie ermöglichen einen strukturierten erstem Kontakt mit dem Thema. Geführt werden diese Regeln
unter dem Begriff der 12-Factor-Apps.</p><p>Im folgenden werden diese Regeln vorgestellt,
allerdings nicht in ihrer eigentlichen Reihenfolge, sondern thematisch gruppiert. Einige der Regeln
liegen inhaltlich nämlich näher beieinander als andere, weshalb es sinnvoll ist, sie als
einen gemeinsamen Block zu behandeln.</p><p>Die erste Regel besagt, dass es für eine
Anwendung genau eine Codebase geben sollte. Das bedeutet, dass der Code für eine
Anwendung in einem einzigen Repository und nicht über zahlreiche Repositories verstreut
vorliegen sollte. Das mag trivial und offensichtlich erscheinen, gehört aber tatsächlich
nicht in allen Projekten zum Alltag.</p><p>Selbstverständlich verbietet das nicht, in mehreren
Anwendungen gleichsam genutzten Code in ein gemeinsames Modul zu extrahieren und dieses in ein
eigenes Repository auszulagern. Vielmehr ist damit gemeint, dass jener Code, der tatsächlich
anwendungsspezifisch ist, an einem einzigen Ort abgelegt sein sollte, der nur für diese
Anwendung gedacht ist.</p><p>Aus dieser Codebase repräsentiert jeder einzelne Commit
praktisch eine eigenständige Version, die deployt werden könnte. Das mag nicht
für jeden Commit sinnvoll sein, aber jede Änderung am Code |ässt sich einzeln
adressieren und könnte als Grundlage für ein Deployment dienen. Das bedeutet, dass es
von einer Codebase unterschiedliche Versionen und von jeder dieser Versionen wiederum auch
mehrere Deployments geben kann.</p><p>Die zweite Regel besagt, dass man Codefragmente, die
in verschiedenen Anwendungen verwendet werden oder die anwendungsunabhängig und damit
generisch sind, in eigene Module extrahieren sollte, die in jeweils einem eigenen Repository verwaltet
werden. Diese Module können dann als Abhängigkeiten in die Anwendungen eingebracht
werden, sollten dort aber explizit deklariert werden.</p><p>Das bedeutet, dass man nicht davon
ausgehen sollte, dass eine bestimmte Abhängigkeit in einer bestimmten Version systemweit

Qgelm - https://schnipsl.qgelm.de/

https://m.heise.de/developer/artikel/Zwoelf-Regeln-fuer-Web-und-Cloud-Anwendungen-4952395.html?wt_mc=rss.red.ho.ho.atom.beitrag.beitrag
https://www.qgelm.de/wb2html/wbb1210.html
https://12factor.net/

Last
update:
2025/06/27
11:17

wallabag:wb2zwlf-regeln-fr-web--und-cloud-anwendungen https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2zwlf-regeln-fr-web--und-cloud-anwendungen

vorhanden ist, sondern die benötigten Abhängigkeiten explizit in den Kontext der
Anwendung installieren muss. Dazu benötigt man im Idealfall eine Paketverwaltung, die das
Verwalten von Abhängigkeiten und deren Versionen vereinfacht. Welche Paketverwaltung das
konkret ist, hängt von der verwendeten Technologie ab – für Node.js wäre
das beispielsweise npm in Verbindung mit der Datei package.json.</p><p>Eine
Anwendung, die sich an die Regeln der 12-Factor-Apps hält, sollte also ihren Code und den
Code aller Abhängigkeiten in einem Verzeichnis und dessen Unterverzeichnissen verwalten,
aber nicht von Dateien oder Verzeichnissen außerhalb dieses Anwendungsverzeichnisses
abhängen.</p><figure class=,video akwa-inline-video video-fullwidth“><figcaption
class=,bildunterschrift akwa-caption“>Die Codebase als Single-Source of
Truth</figcaption></figure><p>Die sechste Regel besagt, dass Anwendungen aus einem oder
mehreren Prozessen bestehen sollen. Das heißt, dass, obwohl es nur eine Codebase geben
darf, damit nicht zwingend gemeint ist, dass auch sämtlicher Code in einem einzigen Prozess
ausgeführt wird. Das wäre im Hinblick auf die eingangs erwähnte verteilte
Architektur, die viele verschiedene Dienste zu einem großen Ganzen kombiniert, auch nicht
sinnvoll.</p><p>Eine Anwendung in Prozesse zu zerlegen, bietet auch den Vorteil, dass diese
individuell und unabhängig voneinander deployt, gestartet und aktualisiert werden
können. Auch ein Ausfall eines Dienstes bedeutet nicht notwendigerweise den Ausfall der
gesamten Anwendung: Im Idealfall [äuft die Anwendung anstandslos weiter, zwar mit
gegebenenfalls geringerer Performance oder mit dem Ausfall einiger Features, aber eben ohne
vollständig auszufallen.</p><p>Die achte Regel ergänzt diese Denkweise, indem sie
vorgibt, dass man über Prozesse skalieren soll. Die Idee dahinter ist, dass man –
spätestens wenn man eine Anwendung auf mehrere Server verteilt – ohnehin
über Prozessgrenzen hinweg skalieren muss, weshalb man dieses Vorgehen von vornherein
einplanen sollte.</p><p>Das bedeutet auch, sich von Anfang an Gedanken über die
Synchronisation von Prozessen und dementsprechend ebenfalls über
Interprozesskommunikation (IPC) zu machen. Das Praktische daran ist, dass diese Mechanismen auch
auf einem einzigen Server funktionieren, wenn man lediglich mehrere Instanzen der Anwendung auf
einer Maschine betreiben will. Damit unterscheidet sich das Modell von der Skalierbarkeit mit
Threads, und das Skalierungsmodell bleibt so oder so das gleiche.</p><p>Die neunte Regel besagt,
dass es essenziell ist, Prozesse züqig starten und stoppen zu können. Das zielt auf den
eingangs bereits erwähnten Punkt ab, elastisch skalieren zu können: In dem Moment, zu
dem mehr Performance benötigt wird, sollte es ein Leichtes sein, zusätzliche Instanzen
zu starten. Es liegt auf der Hand, dass das dann keinen umfangreichen, aufwendigen und
zeitintensiven Vorgang nach sich ziehen darf – ansonsten würde der gewünschte
Effekt nämlich verpuffen.</p><p>Ähnliches gilt für das Beenden eines Prozesses:
Auch hier sollte ein Dienst so gebaut sein, dass es problemlos möglich ist, ihn im laufenden
Betrieb abzuschießen, ohne dass zunächst noch Aufräumarbeiten erforderlich
wären. Auf dem Weg wird es möglich, nicht mehr benötigte Ressourcen
zügig auch wieder freizugeben. Wird diese Regel beachtet, ist es auch weitaus einfacher,
Dienste in Docker beziehungsweise in der Cloud zu betreiben.</p><p>Die zwö|fte Regel
besagt, dass administrative Aufgaben ebenfalls als Prozesse implementiert werden sollten, die auch
Bestandteil der einen Codebase einer Anwendung sein dürfen. Auf dem Weg kann man einer
Anwendung zum Beispiel Kommandozeilenwerkzeuge beilegen, die helfen, die Anwendung zu
verwalten und zu steuern.</p><figure class=,video akwa-inline-video video-fullwidth“><figcaption
class=,bildunterschrift akwa-caption“>Warum Prozesse so wichtig
sind</figcaption></figure><p>Die siebte Regel besagt, dass eine Anwendung ihre eigene
Funktionalität über Ports zur Verfügung stellen sollte – dass es also eine im
Netzwerk zur Verfügung gestellte API geben sollte, auf die andere Anwendungen von
außen zugreifen können. Der Grund für diesen Ansatz ist, dass er

https://schnipsl.qgelm.de/ Printed on 2025/08/03 12:08

2025/08/03 12:08 3/4 Zwolf Regeln fir Web- und Cloud-Anwendungen

unabhängig von Server- und Plattformgrenzen funktioniert, da sich auf Ports nicht nur lokal,
sondern eben auch remote zugreifen 1ässt. Das wiederum ist die Grundlage für
Skalierbarkeit.</p><p>Die vierte Regel kehrt diesen Ansatz um und besagt, dass externe Dienste
ebenfalls über Ports angebunden werden sollten. Auf dem Weg besteht kein Unterschied
zwischen dem Bereitstellen und dem Konsumieren von Funktionalität, die Kommunikation
erfolgt stets über Ports. Das gilt aber nicht nur für fachliche Dienste, sondern auch
für Infrastrukturkomponenten wie Datenbanken oder Message-Queues.</p><p>Zu beachten
ist, dass beide Regeln nicht vorgeben, welches Protokoll zu verwenden ist. Das ist bewusst offen
gelassen, sodass man HTTP, HTTPS, TCP, UDP oder ein beliebiges anderes Protokoll je nach Bedarf
auswählen kann.</p><figure class=, video akwa-inline-video video-fullwidth“><figcaption
class=,bildunterschrift akwa-caption“>Über Ports mit Diensten
kommunizieren</figcaption></figure><p>Die dritte Regel betrifft die Art, wie eine Anwendung
konfiguriert wird. Sie besagt, dass man Konfiguration mit Hilfe von Umgebungsvariablen vornehmen
soll. Das bietet gleich mehrere Vorteile.</p><p>Zum einen ist das Vorgehen
plattformunabhängig, was beispielsweise für Kommandozeilenparameter und
Konfigurationsdateien in der Regel nicht gilt, ganz zu schweigen von den zahlreichen Dateiformaten.
Zum anderen Iäuft man nicht so schnell Gefahr, Umgebungsvariablen versehentlich in die
Versionsverwaltung einzuchecken, da sie – anders als beispielsweise eine Konfigurationsdatei
– üblicherweise nicht in einer Datei in dem Quellcode-Verzeichnis abgelegt
werden.</p><p>Bei komplexeren Konfigurationen kann man zur Not natürlich immer noch auf
eine Konfigurationsdatei ausweichen. Trotzdem empfiehlt sich dann, den Pfad zur Konfigurationsdatei
über eine Umgebungsvariable konfigurierbar zu machen. Auf dem Weg lassen sich
nämlich auf einer Maschine mehrere Instanzen einer Anwendung starten, ohne dass diese sich
gegenseitig in die Quere kommen.</p><p>Die elfte Regel besagt, dass Logging stets auf den
Standardausgabe- beziehungsweise Standardfehlerstrom der Anwendung erfolgen sollte. Das wirkt
zunächst kontraintuitiv. Trotzdem ist es sinnvoll, da spätestens beim Betrieb der
Anwendung in einem Container Log-Dateien flüchtig sind: Wird der Container zerstört,
wird auch die Log-Datei verworfen.</p><p>Daher ist es ratsam und in einem verteilten System auch
einfacher und übersichtlicher, die verschiedenen Ausgabeströme der einzelnen Dienste
zentral zu sammeln und auszuwerten. Diese Aufgabe [ässt sich gut außerhalb der
Anwendung durchführen, was die Entwicklung der Anwendung an sich wiederum einfacher
macht.</p><figure class=,video akwa-inline-video video-fullwidth“><figcaption
class=,bildunterschrift akwa-caption“>Konfiguration und Logging</figcaption></figure><p>Die
fünfte Regel besagt, dass man das Bauen und das Ausführen einer Anwendung in zwei
verschiedene Phasen zerlegen soll. Eine Anwendung wird zunächst erstellt und beispielsweise
in ein Installationspaket oder ein Docker-Image verpackt. Anschließend wird sie
ausgeführt. Es sollte für die Ausführung nicht mehr erforderlich sein,
zunächst noch Code zu kompilieren oder Ähnliches – denn das verschlechtert
nicht nur die Startzeit, sondern führt auch zu fragileren Anwendungen.</p><p>Die zehnte
Regel schließlich besagt, dass die Entwicklungs- und die Ausführungsumgebung
möglichst gleich sein sollen. Damit ist beabsichtigt, dass man Fehler möglichst
früh (also bereits während der Entwicklung) aufspüren kann, und nicht in der
Staging- oder der Produktivumgebung die ein oder andere böse Überraschung erlebt,
weil sich die Umgebung dort gravierend von der lokalen unterscheidet.</p><p>Das Gleiche qilt
natürlich nicht nur für die lokale Entwicklungs- und die Produktivumgebung, sondern
auch für alle anderen Umgebungen, beispielsweise Test und QA. Auch dort sollte die
Infrastruktur der finalen Umgebung möglichst gleichen. Das bedeutet natürlich nicht,
dass alle Umgebungen auf die Datenbank aus dem Produktivsystem zugreifen sollten, aber es sollte
eben lokal eine Datenbank zur Verfügung stehen, die der aus der produktiven Umgebung
möglichst gleicht.</p><figure class=,video akwa-inline-video video-fullwidth”><figcaption
class=,bildunterschrift akwa-caption“>Entwickeln, bauen und

Qgelm - https://schnipsl.qgelm.de/

Last
update:
2025/06/27
11:17

betreiben</figcaption></figure><p>Wer sich an die 12 Regeln häIt, macht im Hinblick auf
eine tragfähige verteilte Architektur schon vieles richtig. Wie eingangs erwähnt, sind
diese Regeln nicht die einzigen, die man bei komplexen Anwendungen im Sinn haben sollte, aber
dennoch bilden sie eine gute Grundlage.</p><p>Gerade, wer noch nicht über allzu viel
Erfahrung in der Struktur und Architektur von Anwendungen verfügt, aber trotzdem eine
verteilte Anwendung entwickeln will oder muss, der ist gut beraten, diese Regeln zu beachten, da sie
sich in der Praxis bewährt haben.</p> </html>

wallabag:wb2zwlf-regeln-fr-web--und-cloud-anwendungen https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2zwlf-regeln-fr-web--und-cloud-anwendungen

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2zwif-regeln-fr-web--und-cloud-anwendungen =

Last update: 2025/06/27 11:17

https://schnipsl.qgelm.de/ Printed on 2025/08/03 12:08

https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:wb2zwlf-regeln-fr-web--und-cloud-anwendungen

	[Zwölf Regeln für Web- und Cloud-Anwendungen]
	Zwölf Regeln für Web- und Cloud-Anwendungen

