2025/11/24 10:20 1/3 Writing a Bootloader Part 1

Writing a Bootloader Part 1

Originalartikel
Backup

<html> <p>This article series explains how to write a tiny 32-bit x86 operating system kernel. We
won’t do very much other than print

Hello world!

to the screen in increasingly complicated ways! We’ll start off in assembly and then build up
to writing C++!</p> <p>A <a

href=, http://3zanders.co.uk/2017/10/13/writing-a-
bootloader/writingabootloader.pdf>presentation of this article series is also available.</p>
<p>To follow along you’re going to need the NASM assembler and QEMU to emulate a virtual
machine for us. QEMU is great because you don’t have to worry about accidentally destroying
your hardware with badly written OS code ;) You can install these on <a
href=,https://msdn.microsoft.com/en-gb/commandline/wsl/install_guide* target=,_blank“
rel=,external“>Windows Subsystem for Linux or Ubuntu with this command:</p> <pre>sudo
apt-get install nasm gemu </pre><p>0n a mac you can use homebrew:</p> <pre>brew install
nasm </pre><p>0n Windows 10 you’ll also want to install an X Server
which allows QEMU to open a window from the linux subsystem.</p> <h2 id=, A-Hello-World-
Bootloader“>A Hello World Bootloader</h2><p>We’re going to write a floppy disk
bootloader because it doesn’t require us to mess about with file systems which helps keep
things simple as possible.</p> <p><img
src=,http://3zanders.co.uk/2017/10/13/writing-a-bootloader/floppy.jpg“ alt=,Cutting edge 1970s
technology!“/></p> <p>When you press the power button the computer loads the BIOS from some
flash memory stored on the motherboard. The BIOS initializes and self tests the hardware then loads
the first 512 bytes into memory from the media device (i.e. the cdrom or floppy disk). If the last two
bytes equal

OxAA55
then the BIOS will jump to location
0x7C00

effectively transferring control to the bootloader. </p> <p>At this point the CPU is running in 16 bit
mode, meaning only the 16 bit registers are available. Also since the BIOS only loads the first 512
bytes this means our bootloader code has to stay below that limit, otherwise we’ll hit
uninitialised memory!</p> <p>Let’s get hello world printing to the screen. To do this
we’re going to use the ‘Write Character in TTY mode’ BIOS
Interrupt Call and the load string byte instruction

lobsb

Qgelm - https://schnipsl.qgelm.de/

http://3zanders.co.uk/2017/10/13/writing-a-bootloader/
https://www.qgelm.de/wb2html/wb210.html
http://3zanders.co.uk/2017/10/13/writing-a-bootloader/writingabootloader.pdf
http://3zanders.co.uk/2017/10/13/writing-a-bootloader/writingabootloader.pdf
https://www.qemu.org/
https://msdn.microsoft.com/en-gb/commandline/wsl/install_guide
https://sourceforge.net/projects/xming/
http://3zanders.co.uk/2017/10/13/writing-a-bootloader/floppy.jpg
https://en.wikipedia.org/wiki/BIOS_interrupt_call

Last update: 2021/12/06

1524 wallabag:writing-a-bootloader-part-1 https://schnipsl.qgelm.de/doku.php?id=wallabag:writing-a-bootloader-part-1

which loads byte at address
ds:si

into

al

. Here goes:</p> <pre>bits 16 ; tell NASM this is 16 bit code org 0x7c00 ; tell NASM to start
outputting stuff at offset 0x7c00 boot:

mov si,hello ; point si register to hello label memory location
mov ah,0x0e ; Ox0e means 'Write Character in TTY mode'

Joop:
lodshb
or al,al ; is al == 0 ?
jz halt ; if (al == 0) jump to halt label
int 0x10 ; runs BIOS interrupt 0x10 - Video Services
jmp .loop
halt:

cli ; clear interrupt flag
hlt ; halt execution

hello: db ,Hello world!*,0 times 510 - ($-$$) db 0 ; pad remaining 510 bytes with zeroes dw 0xaa55 ;
magic bootloader magic - marks this 512 byte sector bootable! </pre><p>If you save this file as

bootl.asm

(or download it
here) we can now use

nasm

to compile it:</p> <pre>nasm -f bin boot1l.asm -o bootl.bin </pre><p>If we run

hexdump bootl.bin

we can see that NASM created some code, padded some zeros then set the final two bytes to the
magic number.</p> <pre>0000000 be 10 7c b4 0e ac 08 c0 74 04 cd 10 eb f7 fa f4 0000010 48 65
6c 6¢ 6f 20 77 6f 72 6¢ 64 21 00 00 00 00 0000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*00001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa 0000200 </pre><p>We can now run
this thing! You can tell QEMU to boot off a floppy disk using

gemu-system-x86 64 -fda bootl.bin

https://schnipsl.qgelm.de/ Printed on 2025/11/24 10:20

http://3zanders.co.uk/2017/10/13/writing-a-bootloader/boot1.asm

2025/11/24 10:20 3/3 Writing a Bootloader Part 1

on Windows 10 you might need to stick
DISPLAY=:0

in front to open the window from WSL. You should get something like this!</p> <p><img
src=,http://3zanders.co.uk/2017/10/13/writing-a-bootloader/bootl.png“ alt=,Our Hello World
bootloader“/></p> <h2 id=, Next-Steps“>Next Steps</h2><p>Next we can start investigating
getting into Protected Mode in <a href=,http://3zanders.co.uk/2017/10/16/writing-a-
bootloader2/“>Part 2!</p> </html>

From:
https://schnipsl.qgelm.de/ - Qgelm

Permanent link:
https://schnipsl.qgelm.de/doku.php?id=wallabag:writing-a-bootloader-part-1 i,

Last update: 2021/12/06 15:24

Qgelm - https://schnipsl.qgelm.de/

http://3zanders.co.uk/2017/10/13/writing-a-bootloader/boot1.png
http://3zanders.co.uk/2017/10/16/writing-a-bootloader2/
http://3zanders.co.uk/2017/10/16/writing-a-bootloader2/
https://schnipsl.qgelm.de/
https://schnipsl.qgelm.de/doku.php?id=wallabag:writing-a-bootloader-part-1

	[Writing a Bootloader Part 1]
	Writing a Bootloader Part 1

